Showing posts with label bycatch. Show all posts
Showing posts with label bycatch. Show all posts

Wednesday, August 31, 2016

Stressors, vitality impairment, and survival of fishes

Developing rapid visual in situ trait assessment (reflex actions, injury) associated with vitality impairment.



Video slideshow (2:06) discussing stressors, vitality impairment, and survival of fishes in fisheries contexts.

Wednesday, June 29, 2016

Assessment of reflex impairment and mortality in discarded deep-sea giant isopods

Giant isopod, Wikipedia

Giant isopods were subjected to simulated capture and discarding by Talwar et al. (2016). Reflex impairment and mortality were induced by capture, exposure to air, and time at surface before discarding. Reflex actions tested are included in Table 1.


Six reflex actions were tested in control animals. Impairment of antennae extension and pleopod movement were not associated with mortality and were removed from the mortality analysis. Figure 1 shows the relationship between increasing reflex impairment and increasing mortality. 


Note that an impairment score of 0 was associated with 50% mortality. Clearly this score does not mean that animals were not impaired. Stressed animals were initially impaired without associated mortality, as indicated by the loss of antennae extension and pleopod movement.  Removal of these two reflex actions from scoring and the mortality analysis may have produced a tighter analysis, but fails to show the sublethal effects of the experimental stressors. 

Tuesday, June 7, 2016

A bigger picture: factors and traits that contribute to vitality and survival of discards in fisheries


A conceptual model for discard survival in fisheries is developed in the ICES WKMEDS4 report (2015). In this concept, survival is linked to species sensitivity, injury, and predation, through fishing factors, environment, and size. The expanded view shows potential factors and traits in more detail.

ICES WKMEDS4 report (2015) Click on images.

Wednesday, January 20, 2016

Using vitality scores to predict post-release survival of plaice

European plaice (Picton & Morrow, 2015)

A recent study of plaice after capture and release from a beam trawl determined that vitality scoring can be used to predict post-release survival (Uhlmann et al. 2016). Vitality scores included observation of reflex impairment and injury. 

Figure from Uhlmann et al. 2016.

The authors conclude: "Our results illustrate that a vitality score and TL were the most relevant explanatory variables to predict post-release survival probability of plaice. In agreement with other post-release survival studies (Yochum et al., 2015), 14 d of post-release monitoring was appropriate to capture almost all fishing-related mortality events. Although one fish died after 21 d, > 60% of mortalities occurred within the first 4 d. Reflexes of both plaice and sole were sensitive to capture stress, in particular air exposure, although some of the differences may have been related to an observer effect."

The authors noted reservations about scoring vitality: "As with other animal behaviour scores, reducing a continuous spectrum of responses to presence/absence observations to improve practicality (Cooke et al., 2013) require a well-defined protocol, and assessments of bias, especially when multiple observers are involved (i.e. inter-observer reliability, Tuyttens et al., 2014). Although scoring binary as opposed to ordinal or continuous responses removes some subjectivity in interpretation (Tuyttens et al., 2009), it may still persist by abstracting from a continuous scale (Tuyttens et al., 2014)."

Uhlmann et al. (2016) comments about binary scoring expose a misconception about vitality scoring using the RAMP approach. For RAMP, presence or absence of individual reflex actions and injuries are given a binary score and then summed to derive an ordinal or continuous vitality score, representing the sum total of impairment. The vitality score is then correlated with survival or mortality for samples of animals (Davis 2010, Stoner 2012).

Future research is suggested to refine the vitality method: "Further research is needed to disentangle the effects of observer, and expectation bias on reflex impairment scores, especially in studies where more than one scorer is involved. Accuracy of scores may also be improved, if researcher handling periods before reflex (and injury) assessments are kept consistently as short as possible. Finally, the utility of RAMP as a proxy to predict post-release survival will depend on both laboratory-based and field calibration studies where key technical, environmental, and biological drivers of post-release survival are included." 

Sunday, August 2, 2015

Triage for captured and released fisheries species: research and survival

Will they survive? (The Guardian, 2013)

Vitality impairment can be linked to post-capture mortality in fisheries bycatch. Vitality impairment can be estimated by direct observation of animal activity, responsiveness, and injury. For each critical fisheries species in crabs, fishes, sharks, and turtles, reflex actions that are consistently present in healthy, uninjured individuals are listed as control levels. Impairment is signified by loss of reflex action types and addition of injury types after capture.  

Reflex actions are fixed, consistent animal behavior patterns that can be triggered by perception of external stimuli (light, sound, smell, gravity, touch). Stimulation of reflex actions is not controlled by body size, motivation, strength of stimulus, or fear. Reflex action traits summed as a whole animal can be an expression of vitality (Davis 2010). In contrast, volitional behavior can be altered by body size, motivation, strength of stimulus, fear, cognition, and as such is not a controlled measure of vitality.

With the species reflexes and potential injury lists, observations of captured animals can be made in commercial and sport fisheries. Patterns of significant impairment can be determined and related to fishing context and species (Raby et al. 2015). These patterns help identify the relative effects of fishing gears, handling, and physical factors (air, temperature, light, pressure) on impairment and potential survival and mortality.


Figure shows overlap between information on animal physiology and fisheries biology, adapted from Horodysky et al. 2015 and modified to show vitality information. Measures of vitality include reflex impairment and injury, which are whole animal measures that are ecologically relevant, linking physiological and population level research and hypothesis testing. Volitional behavior is coordinated whole animal movements beginning with perception and motivation, followed by attraction and aversion to various stimuli (injury, threat, food, shelter, species mates, migration).

Patterns of vitality impairment can guide research questions and priorities to triage fisheries for treatment of bycatch mortality and enhancement of survival. Vitality impairment can measure the efficacy of engineering fishing gears to increase bycatch survival. 

Friday, April 24, 2015

Observing vitality impairment

Animal vitality can be measured by observing species traits associated with activity, responsiveness, and injury. For each species, a group of reflex actions can be observed that are consistently present in healthy animals. As vitality becomes impaired, reflex action traits disappear and injury traits may begin to appear. 

Activity, responsiveness, and injury for measurement of vitality impairment (Benoît et al. 2010). 

Fisheries show gradients of stressors associated with capture, handling, and release or escape. Discard mortality, survival, and vitality impairment are controlled by stressor gradients.

Gradients of mortality and simulated stressors in sablefish fisheries; water temperature and gear type including trawl (time), longline, pot. Smaller fish are more sensitive to stressors (AFSC).

Vitality impairment gradients are associated with stressors and can be used to predict survival and delayed mortality for populations of impaired animals. Vitality impairment gradients can be measured by identifying classes of health condition; excellent, good, poor, and moribund based on rapid observation and impression of animal injury and activity (Benoît et al. 2015). 

The resolution for observations of vitality impairment gradients can be increased by including more information. RAMP is an example of this approach (Davis and Ottmar 2006, Davis 2010). A list can be made of reflex actions present in control animals and possible injuries. Then presence or absence of listed traits is observed after exposure to stressors. Increasing impairment is associated with stress effects and morbidity.
Reflex actions observed in snapper by McArley and Herbert 2014.

Relationships between vitality impairment and survival or delayed mortality can be experimentally determined. Then predictions of stress effects in other settings with similar stressors can be made by measuring vitality impairment associated with stressors, without the need to hold or tag animals. Vitality impairment can be rapidly observed in sampled populations as an additional factor to evaluate stressor effects and is a useful indicator of animal health and stress status, that can be validated experimentally.
Reflex impairment and mortality for individuals (A) and groups (B) of Atlantic cod with 95% confidence intervals (Humborstad et al. 2009). 

Tuesday, March 10, 2015

Snow crab discard mortality

Snow crab in Bering Sea pot fishery (ASMI).

Over 19,000 snow crab were evaluated in Bering Sea pot fisheries 2010-2012 for impairment using the RAMP method (Urban 2015). The estimated discard mortality rate was 4.5% (s.d. = 0.812), significantly below the rate used in stock assessment models. The author concludes: “ In this study, the results of RAMP observations showed that at the range of winter temperatures typically encountered by the Bering Sea snow crab fishery, nearly all discarded crab experienced no reflex impairments. Therefore, we estimate that they should have only a 4.8% chance of short-term mortality. Injuries caused by the fishery occurred at very low levels and so should also have a minimal effect on discard mortality rates. However, because long-term survival rates and the effects of reduced crab vitality are difficult to predict, an estimate of the total impact of discard practices on snow crab stocks is not possible. Even with these uncertainties, the current empirical evidence indicates that the assumed discard mortality rate of 50% is conservative.”

Figure 1. The upper panel shows the relationship between the temperature at the snow crab sorting table and the predicted mortality of snow crab based on reflex impairments. Error bars indicate the 95% CI. The lower panel shows the proportions of the temperatures recorded, while the observations were being made during the 2010–2012 fisheries (Urban 2015).

Sunday, January 11, 2015

Elements of vitality testing and delayed mortality in fisheries


Conceptual diagram outlining elements for vitality testing and delayed mortality in fisheries. Fish are captured and environment sampled. Fish become stressed which is measured as impairment from control health by observing reflex actions and injury types. Stressed fish are held for captive observation to determine delayed mortality. Bias and error can be introduced by initial impressions of vitality before testing reflex actions and injury, by differing observer scoring opinions, and by holding conditions that are stressful for the fish. 

Scoring vitality impairment is most difficult when observer decision is used. Training observers is a key part of RAMP development. Reflex actions (RA) are clearly present in control animals, and observers do not need decisions to score present. As impairment increases, scoring RA requires increasing observer decisions about whether sampled RA are present. The decision can be based on how control RA appear to trained observers. Each observer will have different opinions that can be influenced by their initial impressions of the animal and of the stressor treatments the animal has been exposed to.

Initially after stress induction, RA impairment increases and mirrors stress levels, while mortality is not evident. When animals reach a critical impairment level, replicates begin to show mortality, which increases rapidly over small changes in RA score. At highest levels of impairment decisions are less frequent as the animal ceases general movement and responsiveness.

Friday, December 19, 2014

Belly up: Righting reflex action time to recovery correlated with delayed mortality?

Upside down fish in market tank (Hong Kong)

RAMP incorporates presence/absence of several reflex actions and injuries to measure vitality impairment and potential delayed mortality. A simpler method may be possible by measuring time for recovery of orientation when fish are placed upside down in water. This method can be tested.

Place a fish upside down in water and observe the time until the fish returns to normal orientation. This duration is a measure of vitality impairment. Longer recovery times indicate greater vitality impairment and data can be included in statistical models for relationships among fishery stressors, injury, righting time, and delayed mortality. We can test the relationship between righting impairment and delayed mortality. 

Righting reflex action is a central behavior that is the nexus of neural, muscle, and organ actions and is intimately linked with loss of physiological regulation associated with stressor exposure.  Olfactory impairment is another example of a central function that is correlated with delayed mortality (in humans, Pinto 2014).

Body orientation is a sensitive measure of fish consciousness. Presence or absence of righting can be included in the RAMP score. Loss and recovery of orientation is a well known symptom for induction of and recovery from fish anesthesia and is used as an indicator of morbidity and delayed mortality in stress experiments (Davis and Ottmar 2006, Szekeres et al. 2014, Raby et al. 2015).  

Measuring replicate animals for the time to righting recovery and delayed mortality after a stressor experiment can test the correlation between righting impairment and delayed mortality. If the correlation between righting and delayed mortality is valid and strong, then we have a rapid method for predicting discard mortality on board fishing vessels without need for holding or tagging fish to confirm their survival. Research groups on fishing vessels can observe fish during catching, landing, sorting, and discarding under differing stressors; seasons, water temperatures, tow durations, catch quantities, species mixes, and sorting times.

Friday, December 12, 2014

Measuring and scoring vitality impairment

Associations between vitality impairment and mortality in Tanner and snow crab; Stoner et al. 2008.

At the risk of repetition and irrelevance, I will repeat my short history with vitality impairment and mortality.  I began by trying to find out what kills fish. The word fish applies to all animal types in a fishery. We chose to do this in the lab for control reasons, given the common confounding of stressors in fisheries (Davis 2002). All sorts of objections were made by field people that the work was irrelevant because it did not include field conditions. Well we focused on the fish and their capabilities, in an effort to formulate hypotheses that could be tested in the field. We found that each species and size of fish has different sensitivities to stressors and that stressors of importance were different for species.  We also found that some stressors (temperature and hypoxia) could kill fish without apparent macro-injury. After killing many fish, we endeavored to identify characteristics (traits) of fish and fisheries that could be correlated with mortality as predictors, given the difficulty of holding fish and measuring delayed mortality in the field. We tried many traits; muscle and plasma physiology, stressors, volitional behavior, injury, and reflex actions.

Effects of fishing gear, temperature, and fish size on sablefish mortality, NOAA.

Muscle and plasma physiology were not correlated with mortality because these are alarm responses that can be adaptive or maladaptive responses to stressors. In specific contexts, lactate and CO2 may be useful where hypoxia or fatigue are a concern.  

Stressors are an approach that has garnered enthusiasm. However their effects can be confounded and difficult to model given the relatively unlimited combinations of factors that are possible in a fishery; seasonal effects, gear type and deployment times, catch type and amount, sorting and discarding.  

Volitional behavior is not correlated with mortality because it is subject to variation that is not directly linked to mortality, such as changes in perception, motivation, fear, and attraction; all which confound the relationship of behavior and mortality.  

Injury is often correlated with mortality, especially in accidental death.  However not all mortality is correlated with injury, as in the effects of temperature and hypoxia, for which micro-injury may be evident (apoptosis) but difficult to measure in the field. Often the effects of injury, temperature, and hypoxia are confounded making interpretations of their effects on mortality difficult.

Single reflex actions are often not correlated with mortality when they are part of systems not central to body function and regulation directly related to mortality. They may be important for complex behaviors; predator avoidance, feeding, habitat choice, migration and these can have indirect effects on mortality. 

We reasoned that fish had a quality called vitality and that vitality was correlated with mortality. However, for an individual fish this relationship is binomial. The fish is alive or dead. So decreasing vitality results in sublethal effects on behavior until a threshold is reached and the probability for death increases rapidly. In statistical groups of fish, decreasing vitality is log-linearly related to mortality.

At this point we chose to not measure the strength of reflex actions (because of confounded size effects); instead to score the presence or absence of several reflex actions as an expression of reflex action impairment and loss of vitality. Reflex actions are fixed behavior patterns based on neural, muscle, and organ functions which do not vary with changes in perception, motivation, fear, and attraction.  We chose to focus on several types of reflex actions to increase the probability that reflex actions key to body regulation were included. Later work has shown that the orientation reflex is such a key reflex, often correlated with morbidity and mortality associated with hypoxia and fatigue. 

Previous work with vitality scoring in fisheries had developed the semi-quantitative analysis method (SQA) of scoring fish activity and injury, which was used in tagging studies and in Pacific halibut discard mortality estimation (ICES 2014). The method observes the sequential loss of operculum clamping and startle to touch and increased injuries from minor to major and bleeding; with ordinal scoring (1-4) for severity of impairment. The vitality score is readily incorporated in multivariate models that may identify stressors of importance to mortality and model mortality based on those stressors. RAMP can be scored in a similar manner as SQA and included in multivariate models. RAMP scores severity of impairment by noting the sequential loss of several types of reflex action and inclusion of injury types. Scores range from 0 to a maximum which is the number of trait types observed for presence/absence. Strength of action and extent of injury are not included because of the confounding effects of size. The effect of size is included in the model explicitly as fish length or weight. Smaller fish will have more vitality impairment than larger fish, when exposed to equivalent stressors.

RAMP is a simple extension of the SQA concept that includes more testing for reflex actions. SQA and RAMP are similar scoring systems that differ by emphasis. SQA and RAMP score activity, responsiveness, and injury to quantify levels of vitality impairment. RAMP simply includes more information about types of reflex actions in an effort to include reflex actions that are central to body regulation over a range of stressor conditions.

The primary reason for inclusion of more reflex action information in RAMP is the observation that some reflex actions are central expressions for status of body regulation. Given the binomial nature of mortality observations, we need to know why fish die. They die for many reasons which all seem to point to the loss of physiological regulation; either homeostatic or allostatic regulation. How do we measure regulation?  Allostasis shows us that consideration of homeostatic set points is not sufficient to predict mortality. My view is that vitality is correlated with physiological regulation and that impairment of vitality and regulation leads to mortality when physiological bounds of the species are exceeded. Until we can directly measure the causes for mortality, we rely on measures for vitality based on activity, responsiveness, and injury.

For predicting mortality, I chose to measure vitality over modeling stressors because of the direct relationship between vitality impairment and mortality. Stressor interactions in fisheries can make interpretation of stressor effects on mortality difficult to interpret. Information about stressors in multivariate models for mortality can be used to identify changes in the design of fishing gears that reduce bycatch mortality. Then vitality impairment can be used to evaluate reduction in discard mortality associated with new gears.

Saturday, October 18, 2014

Survival of schooling small pelagic fish discarded from purse seine fisheries

Greenback horse mackerel, Trachurus declivis 



Vitality impairment and RAMP can be used to determine survival of discarded schooling small pelagic fish in purse seine fisheries.  When catch is too large, fish are “slipped” for the net and discarded. These discarded fish are usually exposed to some level of hypoxic conditions associated with crowding in the purse seine. Elevated temperature in surface water may be a stressor. Skin abrasion and scale loss can occur in the net. Many small pelagic species (mackerel, sardine, anchovy, smelt, herring) caught in purse seines are obligate or facultative schoolers that reflexively form groups mediated by the optomotor response. Vitality impairment can be tested for individual fish or groups. See Davis and Ottmar, 2006 for testing groups of free-swimming fish. Schooling fish seek the company of species mates, so testing groups of schooling fish is probably the most informative method. How is this testing done and linked with delayed mortality in captive observation tanks?    

RAMP links vitality impairment scores with delayed mortality scores. The RAMP estimate for delayed mortality is only as good as the mortality estimates from captive observation or tagging experiments. How many replicates are needed in captive observation experiments? The purse seine schooling species need to be held in groups. A replicate group size of ten fish is good for schooling. These fish must be held in good water quality and circulation, in a circular tank size that allows schooling. For initial RAMP formulation, you will need 10 replicate groups of ten fish each. Observations of reflex action impairment and delayed mortality should be made over a range of stressor intensities that result in delayed mortality of 0 to 100%. Then replicate vitality impairment scores are linked with replicate delayed mortality scores to form the RAMP which can be validated with further experiments and replication.

Suuronen, 2005  Stressors in capture and escape of fisheries.

Fish can be sampled from any point on the fishing process, depending on the stressors of interest. Reflex action testing can be made on a group of fish held in a circular observation tank big enough for schooling (See Davis and Ottmar, 2006).  Possible reflex actions for testing include: orientation; schooling; rheotaxis; startle response to sound or light; swimming to bottom of tank. Injuries can also be noted; abrasion, scale loss. After testing the replicate group can then be placed in a holding tank and monitored for delayed mortality through five to ten days. 


Herring lose schooling, orientation, and tail beat frequency increases as the purse seine is drawn smaller (Morgan, 2014). Fatigue and hypoxia are possible stressors in purse seines (Tenningen 2014).

For discard species caught in purse seines that are not schooling fish, or are larger schooling fish, individual fish can be tested for vitality impairmentReflex actions tested can include: body flex, orientation, eye roll, operculum or mouth clamp, tail grab, righting, startle.  These fish can be tagged for identification and held together for five to ten days in tanks to determine delayed mortality.

Sunday, October 5, 2014

RAMP is a component of an integrated conservation approach to coho salmon bycatch mortality management


Results of Raby et al. 2014 demonstrate the integration of vitality impairment and coho bycatch mortality estimation and management.
“We have provided an estimate of bycatch mortality for an endangered population of coho salmon captured in an aboriginal beach seine fishery, based on three years of tracking fish released from the fishery.” 
“Among all the variables we tested as predictors of mortality, none were significant except for RAMP score, whereby fish with higher RAMP scores (more impaired) were less likely to be successful migrants (Table 3, Fig. 4).”
Distinguishing between natural mortality and bycatch mortality. 
“An alternate approach to calculating a bycatch mortality rate that attempts to distinguish bycatch from natural mortality, is to use RAMP scores and their mortality rates at each level of impairment, and assume negligible bycatch mortality for the fish that were least impacted (vigorous at release).”
“Since some in-river mortality is natural, there is a need to attempt to differentiate mortality caused by the capture itself. To do so, RAMP scores can be used whereby coho salmon released with little or no reflex impairment (vigorous) are assumed to experience no post-release bycatch mortality. Using that conservative assumption, the post-release mortality rate for those fish can then be used as a baseline within the data set. Additional mortality above that baseline that occurs at higher levels of reflex impairment can then be assigned to the fishery (see Fig. 4).”
Using RAMP to monitor condition of bycatch and improve their survival
“The expanded validation of the RAMP approach in the present study provides confirmation that this simple technique is ready for use in this fishery if needed (Raby et al. 2012). The observers in the fishery could easily be taught how to conduct RAMP assessments to monitor the condition of bycatch in real time, provide advice to their crews on how to improve fish condition, and make decisions about whether individual fish should be revived using recovery bags.”

Friday, September 19, 2014

Flexibility of using RAMP to determine bycatch mortality rates for Tanner crab caught in Alaska bottom trawls

Tanner crab (Chionoecetes bairdi), AFSC
Yochum et al. 2015 evaluated the flexibility of RAMP methodology by creating a RAMP for Tanner crab (Chionoecetes bairdi) discarded from the groundfish bottom trawl fishery in the Gulf of Alaska and comparing it to a previously established RAMP for unobserved Tanner crab bycatch (encountered gear and remained on the seafloor) from the bottom trawl fishery in the Bering Sea. The authors found that: “The two RAMPs and the overall mortality rates calculated using these predictors were comparable. However, we detected significant differences between RAMPs. While probabilities of mortality were similar between the two studies for crab with all or no reflexes missing, discarded crab with intermediate reflex impairment had lower mortality probabilities than those from the unobserved-bycatch study. Our results indicate that a RAMP may produce more accurate mortality estimates when applied to animals experiencing similar stressors as those evaluated to create the RAMP, through similar methodology.”


Conditions for holding crab after exposure to stressors can control delayed mortality and should be considered in experiments. “There were differential mortality rates by holding type. Higher mortality rates occurred in the on-board tanks (where the crab were held for the first few days) and in the laboratory tank. Moreover, Score-zero crab died in the holding tanks, but not in the at-sea cages. These results indicate that holding tanks contribute additional stressors, either due to transport, additional handling, or stress from being held in an unnatural setting or at temperatures greater than what was experienced in their natural environment. 
Our holding duration of two weeks was sufficient to determine mortality for all Scores. Given that it can take longer for Score-zero animals to die than those with higher Scores, our holding period allowed us to sufficiently capture Score-zero mortalities. However, the death of a Score-zero crab at day 12 may indicate that holding for more than a week confuses mortality attributed to fishing stressors with that from captivity.”


Evaluation of RAMP flexibility was made by comparing results from different studies. “To evaluate the divergence between the RAMPs we analyzed the differences between the studies. The primary difference was in experimental methods, namely the treatment of the crab before assessment. Crab from the Discard-mortality study were exposed to air for 90min on average (range from 9 to 230min) without any “recovery” in water. In contrast, crab from the Unobserved-mortality study had only brief air exposure and were held in water while awaiting assessment (generally less than 15 min), which may have allowed some recovery. 
These differences in air exposure and recovery in water probably affected the relationship between observed reflex impairments and delayed mortality and hence accounted for the discrepancy between RAMPs. Prolonged air exposure and experiencing cold temperatures was linked with increased delayed and instant mortality, number of autonomies for crab, as well as reduced vigor, juvenile growth, and feeding rates (Carls and O’Clair, 1995; Giomi et al., 2008; Grant, 2003; Stoner, 2009; Warrenchuk and Shirley, 2002). Stoner (2009) found that reflex impairment score and exposure to freezing temperatures were nearly linearly related for Tanner crab. Moreover, he found that the different RAMP reflexes had variable sensitivity to freezing temperatures, namely that the chela closure reflex was the most sensitive reflex, and mouth closure was least. Similarly, Van Tamelen (2005) found that the legs and eyes of snow crab cooled faster than the body, perhaps making them more susceptible to cold air exposure. We hypothesize that the prolonged air exposure for the Discard-mortality study likely impaired the crabs’ reflexes and resulted in higher Scores.”


Recommendations made by the authors. “Results from this study indicate that bias can be introduced in mortality rate estimates when using a RAMP created for one study to estimate mortality rates for a different study where the experimental methods differ, especially with respect to air exposure and recovery in water before assessment. However, when RAMP is used only to approximate mortality rates or to make comparisons between gear types or uses, a previously established RAMP could be used with caution, especially if animals with intermediate Scores are not predominant. For more accurate bycatch mortality rate estimates, our results indicate the importance of using a RAMP that was created by assessing animals that experienced similar stressors to those which the RAMP will be applied. Namely, the procedure for assessing the animals should be similar. We feel that the amount of time the animal spends out of water before assessment be standardized within a time range, along with whether or not the animal is allowed to recover in water before assessment, unless these variables are the treatments being studied.” 
“Our results indicate that consistency in methodology and relevance with respect to mimicking actual fishing stresses for the RAMP approach increases the flexibility of RAMP. It is therefore important, when creating a RAMP, to create repeatable methods that are well documented when publishing. RAMP reflexes should be assessed in a specified order to prevent bias from reflexes that are physiologically linked. If there is a reflex that influences the determination of other reflexes it should be assessed last or not at all. Reflexes that are difficult to determine presence or absence should not be used, and it should be clear in the methods what constitutes an “absent” reflex and how immediate mortalities are treated (are they given a Score or classified separately?). In addition, when a RAMP is being created, data should be recorded on all possible stressors, including injury, and evaluated for their contribution to mortality. Moreover, effort should be made (within the logistical constraints of field and laboratory research) to minimize additional stressors that are unrelated to the fishing stressors of interest.”

Wednesday, August 20, 2014

Sublethal effects of simulated angling capture (fatigue and air exposure) in snapper: reflex impairment and physiological stress.

Snapper, Pagrus auratus. Floor Anthoni 2006.

A study of reflex impairment and physiological stress was conducted with captured snapper and published in JEMBE 2014 by McArley, T.J & Herbert, N.AFish were exposed to simulated angling by chasing to fatigue, followed by air exposure.  The authors' text is quoted below.

Reflex impairment (RI) was measured for seven reflex actions (Table 1). “If the presence of a positive reflex response was ambiguous it was scored as absent. The entire RI assessment was completed in less than 50 s, of which the fish was exposed to air for approximately 30 s. Reflexes were scored present (1) or absent (0) for individual fish and the RI score (proportion of reflexes impaired) was calculated by dividing the number of reflexes absent by the total number of possible reflexes (Davis, 2010). For example if four out of the seven possible reflexes were absent a fish would be given an RI score of 0.57.”



Reflex impairment is a potential measure of vitality loss after exposure of snapper to angling stressors: 

“A primary aim of this study was to assess the potential use of RI as a simple tool for measurement of fish vitality following angling and our lab-based trials indicate RI has the potential to be used in this way. RI was significantly related to the duration of strenuous exercise and air exposure (Fig. 1) and therefore provided a good index of fish condition. Importantly, fish exposed to more severe stress treatments exhibited greater RI than those exposed to more mild stress treatments, a finding that agrees with several other studies of RI in fish (Barkley and Cadrin, 2012; Brownscombe et al., 2013; Campbell et al., 2010b; Davis, 2007; Humborstad et al., 2009; Raby et al., 2012, 2013). Furthermore, greater RI was associated with significantly higher plasma lactate concentration and reduced muscle pH suggesting that RI can indicate (predict) an alteration in physiological condition.” 



Anaerobic respiration is associated with lactate production and reflex impairment:

“Burst swimming is powered by anaerobic respiration fueled by stored energy in white muscle (Milligan, 1996) and the lactic acid produced accumulates rapidly in muscle tissue and then “spills over” into circulation after a 5–10 min delay (Wood, 1991). Plasma lactate therefore serves as a useful indicator of anaerobic respiration in fish (Gale et al., 2011; Lowe and Wells, 1996; Meka and McCormick, 2005) and, as fish performed burst swimming during chasing, it is unsurprising that plasma lactate correlated positively with the duration of chasing stress and that both muscle pH and blood pH were lower in fish chased for longer periods. Physiological alterations appeared to be more pronounced in summer than in winter suggesting that when water temperature is warmer a more severe stress response appears to occur in snapper.”
Physiological basis for reflex impairment: 
“RI is thought to have a physiological basis (Davis, 2010) and a significant relationship between RI and increased plasma lactate concentration has been observed in salmonids (Raby et al., 2013). As RI is measured directly after stressor exposure physiological disturbances that manifest quickly during stress are likely causes of RI. Physiological alterations such as cortisol concentration that can plateau 30 min - 1 h after the initial stressor exposure (Milligan, 1996; Wendelaar Bonga, 1997) are therefore unlikely to be directly responsible for the RI measured in this study. In this study most RI occurred as a result of an inability to perform reflexes involving powerful muscular contractions, such as the gag reflex, body flexing and the startle response. Powerful muscular contraction is fueled by anaerobic metabolism in white muscle fibres and can only be maintained for short periods (Milligan, 1996). As higher RI scores were correlated with lower muscle pH and higher concentrations of plasma lactate it is hypothesized that muscle fatigue resulting from anaerobic metabolism performed during strenuous exercise caused the majority of the observed RI. The muscle pH and plasma lactate concentrations associated with the same RI scores, however, were different in summer and winter (Fig. 4) and there was no difference between the summer and winter measures of fish vitality (RI) and mortality. This suggests that rather than being causes of RI, plasma lactate concentration and muscle pH may have been indicators of an unmeasured physiological process that impaired some of the reflexes quantified in the current study. Other reflexes we measured that were not as commonly impaired, such as the righting response and vestibular ocular, are essentially neurological and their impairment likely results from alternative pathways to those measured in this study.”

Mortality was rarely observed when snapper were exposed to angling conditions: 
“Despite the limitations of comparing our mortality estimates to real fishing scenarios the findings provide evidence that strenuous exercise and air exposure imposed during angling, are not likely to be direct causes of discard mortality in P. auratus. During the collection of sub-legal snapper from the wild for this study, fish were landed relatively quickly (approximately 15 to 30 s), and were typically unhooked in less than 30 s. In investigations of authentic angling events for P. auratus of comparable size (< 270 mm FL) in south eastern Australia, the majority of fish were landed in less than 30 s (Broadhurst et al., 2012; Grixti et al., 2010) and had less than 30 second exposure to air (Broadhurst et al., 2012). Thus, the 5 minute strenuous exercise period and the 3 minute air exposure period in this study must be considered extreme levels for recreational angling and probably rarely occur in authentic angling events. Encouragingly, even with these high levels of stress, little mortality was seen against a backdrop of high summer water temperatures.”
Predation risk for snapper that show reflex impairment associated with angling: 
“It is often overlooked in catch and release studies but a potentially important contributor to discard mortality is post-release predation (Raby et al., 2014). While no measure of predation risk was assessed in this study, our measurements of RI indicate that snapper may not be overtly susceptible to predation upon release, at least when no barotrauma is present. This is because RI was minimal among snapper released after angling simulations most relevant to authentic recreational angling events (i.e. 0.5 min chasing with up to 1 min air exposure), and it is believed that the vigorous condition of these fish would not make them easy targets for predators. Importantly, reflexes that might be associated with reduced predator avoidance, such as the startle response and righting response, remained intact.”
Snapper captured by trawl may be at risk from increased air exposure: 
“It is likely that mortality increases significantly at some point beyond 3 min air exposure in P. auratus but this may not be relevant to recreational angling. Longer periods of air exposure, however, may be present in commercial trawl fisheries where large catches are sorted on deck so knowledge of air exposure tolerance beyond that observed in this study would be useful in this context. Therefore, the existence of a predictive relationship between RI and mortality in snapper remains a possibility but probably requires the inclusion of more extreme air exposure treatment to be clarified in future trials.”

Clearly any capture of snapper that produces barotrauma can be a source of mortality and requires further study in deep water commercial and recreational fisheries.

Thursday, July 10, 2014

Making and Using RAMP in Fisheries

A video is available that explains making and using RAMP in fisheries.


Why is vitality impairment related to mortality?
By definition, healthy animals have full vitality. Vitality becomes impaired as animals become stressed by capture and handling. Severe vitality impairment can result from the effects of physical injury or other stressors, e.g., fatigue, temperature, light, sea state, and air exposure. Maladaptive stress responses or critical injury associated with severe vitality impairment can result in immediate and delayed mortality.
Why score reflex actions and injury?
Reflex actions are fixed behavior patterns that are directly related to vitality impairment, without control by volitional behavior factors, e.g., motivation, hunger, fear, shelter seeking, migration, and reproduction. Reflex actions reflect the state of neural, muscle, and organ functions.
Injuries are directly related to vitality impairment because they can control neural, muscle, and organ functions.
Scoring vitality impairment in general
Any type of reflex action or injury that is related to vitality can be summed to score vitality impairment. The important point is that a sum of presence/ absence scores for vitality characteristics produces an index of vitality impairment. This vitality index can then be used as a measure of variability for sublethal stressor effects in fisheries, as well as a validated indicator and predictor of mortality and survival.

Steps for making and using RAMP in fisheries.

Saturday, May 31, 2014

Methods for estimating discard survival in fisheries: an integrated approach

Discarding Pacific halibut, FAO

ICES has published a report on methods for estimating discard survival in fisheries. The report details the results of the February, 2014 ICES WKMEDS workshop on discard survival.
“This report will:
-  describe the concepts behind assessing discard survival (Sections 2 and 3);
-  describe three different approaches for estimating survival (vitality assessment, captive observation and tagging) (Sections 4, 5 and 6); and 
-  provide guidance on the selection of the most appropriate approaches and experimental designs, as well as how to integrate and utilize information from them, with respect to specific discard survival objectives (Sections 3, 7, 8 and 9). 
Later versions of this report will cover in more detail: 
-  techniques for assessing survival using tagging and biotelemetry; and 
-  the most appropriate methods for analyzing and reporting survival data. 
It is assumed that the user of these guidance notes has sufficient scientific training, or at least access to suitable scientific support, to be able to conduct the techniques described in these notes in an appropriately systematic and disciplined manner. However, these guidance notes are intended also to be informative for other stakeholders associated with fishing (primarily fishers and managers) who wish to support and understand discard survival estimates.”
The ICES WKMEDS report is a summary of an integrated approach for estimating discard survival. The approach uses various combinations of vitality assessment, captive observation, and tagging to achieve realistic estimates for discard survival in fisheries. The combinations of methods are determined by scientists, stakeholders, and managers using evaluation and prioritization:
“the choice of which species in which fisheries to study depends upon several criteria: existing survival information, the biological traits of the species, its population status, magnitude of discarding, fishery characteristics, environmental characteristics, socio-economic value of the fishery, available resources, and management policy. The process of prioritizing is unlikely to be simple and may involve a number of iterations, where results of preliminary studies inform the final choice.”
The ICES WKMEDS report represents a new approach for estimating discard survival. Sources of information about objectives, priorities, resource implications, and time frames are included in a decision matrix. Managers can use the matrix to make informed choices about discarding in key fisheries and management units and what methods can be used for further study of discard survival. Initial calibration of vitality assessment using delayed mortality observations of discards creates validated indicators for survival. Then use of validated vitality assessment indicators such as RAMP (Reflex Action Mortality Predictors) can provide rapid real-time assessment of potential discard mortality on-board fishing vessels.


ICES. 2014. Report of the Workshop on Methods for Estimating Discard Survival (WKMEDS), 17–21 February 2014, ICES HQ, Copenhagen, Denmark. ICES CM 2014/ACOM:51. 114 pp.