Showing posts with label invertebrates. Show all posts
Showing posts with label invertebrates. Show all posts

Wednesday, June 29, 2016

Assessment of reflex impairment and mortality in discarded deep-sea giant isopods

Giant isopod, Wikipedia

Giant isopods were subjected to simulated capture and discarding by Talwar et al. (2016). Reflex impairment and mortality were induced by capture, exposure to air, and time at surface before discarding. Reflex actions tested are included in Table 1.


Six reflex actions were tested in control animals. Impairment of antennae extension and pleopod movement were not associated with mortality and were removed from the mortality analysis. Figure 1 shows the relationship between increasing reflex impairment and increasing mortality. 


Note that an impairment score of 0 was associated with 50% mortality. Clearly this score does not mean that animals were not impaired. Stressed animals were initially impaired without associated mortality, as indicated by the loss of antennae extension and pleopod movement.  Removal of these two reflex actions from scoring and the mortality analysis may have produced a tighter analysis, but fails to show the sublethal effects of the experimental stressors. 

Sunday, February 7, 2016

Why observe several reflex actions together to measure animal vitality?


Why observe several reflex actions together to measure animal vitality? The short answer is that animals are whole beings; a summary collection of component parts and their interactions in response to stimuli.

Animals are constructed of biochemical and behavioral components that interact to form a whole; capable of responding to stressors. The interactions of stressors and behavior are also important for prediction of vitality impairment and survival. Reflex actions are fixed behavior patterns that include biochemical, muscle, organ, and nerve functions.

Efforts to identify factors that can control vitality and predict post-release survival and mortality of captured animals generally strive to identify single important variables. For example, temperature changes, injury, exhaustion, and hypoxia can control vitality and survival. For simplicity, single factors are statistically modeled as predictors for survival. Factor interactions are rarely considered because of their complexity.

Patterns of vitality impairment vary with species and contexts. Observing impairment of several reflex actions and possible injury in a defined context integrates the effects of multiple stressors, contexts, and their interactions on animal impairment and survival. Measurement of single reflex action impairment can miss the range of vitality that spans from excellent to moribund. 

Stoner 2012 (crabs)

Below are several examples of the cascading nature of impairment observed as individual reflex actions cease to function in a spectrum of stressor intensities. Reflex actions with higher proportion of impairment are impaired before those with lower percentage. Note that patterns of impairment vary with taxa and context.

Davis 2010 (walleye pollock, coho salmon, northern rock sole, Pacific halibut)


Uhlmann et al. 2016 (plaice, sole)

Forrestal 2016 (triggerfish)

Forrestal 2016 (yellowtail snapper)

Danylchuk et al. 2014 (lemon shark)


Sampson et al. 2014 (mottled mojarra)

Stoner 2009 (Tanner crab, snow crab)

Stoner 2012 (spot prawn)

Sunday, August 2, 2015

Triage for captured and released fisheries species: research and survival

Will they survive? (The Guardian, 2013)

Vitality impairment can be linked to post-capture mortality in fisheries bycatch. Vitality impairment can be estimated by direct observation of animal activity, responsiveness, and injury. For each critical fisheries species in crabs, fishes, sharks, and turtles, reflex actions that are consistently present in healthy, uninjured individuals are listed as control levels. Impairment is signified by loss of reflex action types and addition of injury types after capture.  

Reflex actions are fixed, consistent animal behavior patterns that can be triggered by perception of external stimuli (light, sound, smell, gravity, touch). Stimulation of reflex actions is not controlled by body size, motivation, strength of stimulus, or fear. Reflex action traits summed as a whole animal can be an expression of vitality (Davis 2010). In contrast, volitional behavior can be altered by body size, motivation, strength of stimulus, fear, cognition, and as such is not a controlled measure of vitality.

With the species reflexes and potential injury lists, observations of captured animals can be made in commercial and sport fisheries. Patterns of significant impairment can be determined and related to fishing context and species (Raby et al. 2015). These patterns help identify the relative effects of fishing gears, handling, and physical factors (air, temperature, light, pressure) on impairment and potential survival and mortality.


Figure shows overlap between information on animal physiology and fisheries biology, adapted from Horodysky et al. 2015 and modified to show vitality information. Measures of vitality include reflex impairment and injury, which are whole animal measures that are ecologically relevant, linking physiological and population level research and hypothesis testing. Volitional behavior is coordinated whole animal movements beginning with perception and motivation, followed by attraction and aversion to various stimuli (injury, threat, food, shelter, species mates, migration).

Patterns of vitality impairment can guide research questions and priorities to triage fisheries for treatment of bycatch mortality and enhancement of survival. Vitality impairment can measure the efficacy of engineering fishing gears to increase bycatch survival. 

Tuesday, March 10, 2015

Snow crab discard mortality

Snow crab in Bering Sea pot fishery (ASMI).

Over 19,000 snow crab were evaluated in Bering Sea pot fisheries 2010-2012 for impairment using the RAMP method (Urban 2015). The estimated discard mortality rate was 4.5% (s.d. = 0.812), significantly below the rate used in stock assessment models. The author concludes: “ In this study, the results of RAMP observations showed that at the range of winter temperatures typically encountered by the Bering Sea snow crab fishery, nearly all discarded crab experienced no reflex impairments. Therefore, we estimate that they should have only a 4.8% chance of short-term mortality. Injuries caused by the fishery occurred at very low levels and so should also have a minimal effect on discard mortality rates. However, because long-term survival rates and the effects of reduced crab vitality are difficult to predict, an estimate of the total impact of discard practices on snow crab stocks is not possible. Even with these uncertainties, the current empirical evidence indicates that the assumed discard mortality rate of 50% is conservative.”

Figure 1. The upper panel shows the relationship between the temperature at the snow crab sorting table and the predicted mortality of snow crab based on reflex impairments. Error bars indicate the 95% CI. The lower panel shows the proportions of the temperatures recorded, while the observations were being made during the 2010–2012 fisheries (Urban 2015).

Tuesday, October 7, 2014

Fisheries studies that have used and documented reflex actions or injury for vitality impairment testing

The table presents selected examples of reflex action & injury vitality impairment testing.



See also a list of reflex actions and injury that may be scored for vitality impairment.

Citations:

AFSC, Alaska Fisheries Science Center 2014 Observer Sampling Manual.
Fisheries Monitoring and Analysis Division, North Pacific Groundfish Observer Program. Seattle, WA.

Barkley, A.S. & Cadrin, S.X. 2012. Discard mortality estimation of yellowtail flounder using reflex action mortality predictors. Trans. Am. Fish. Soc. 141:638-644.

Benoît, H.P., Hurlbut, T., and Chassé, J. 2010. Assessing the factors influencing discard mortality of demersal fishes using a semi-quantitative indicator of survival potential. Fish. Res. 106:436-447.

Braccini, M., Van Rijn, J., and Frick, L. 2012. High post-capture survival for sharks, rays and chimaeras discarded in the main shark fishery of Australia? PLoS ONE 7: e32547.

Brownscombe, J.W., Thiem, J.D., Hatry, C., Cull, F. Haak, C.R., Danylchuk, A.J., and Cooke, S.J. 2013. Recovery bags reduce post-release impairments in locomotory activity and behavior of bonefish (Albula spp.) following exposure to angling-related stressors. J. Expt. Mar. Biol. Ecol. 440:207-215.

Brownscombe, J.W., Nowell, L., Samson, E., Danylchuk, A.J., & Cooke, S.J. 2014. Fishing-related stressors inhibit refuge-seeking behavior in released subadult Great barracuda. Trans. Am. Fish. Soc. 143:613-617.

Campbell, M.D., Patino, R., Tolan, J., Strauss, R., and Diamond, S.L. 2010.
Sub-lethal effects of catch-and-release fishing: measuring capture stress, fish impairment, and predation risk using a condition index. ICES J. Mar. Sci. 67:513-521. 

Campbell, M.D., Tolan, J., Strauss, R., and Diamond, S.L. 2010. Relating angling-dependent fish impairment to immediate release mortality of red snapper (Lutjanus campechanus). Fish. Res. 106:64-70.

Danylchuk, A.J., Suski, C.D., Mandelman, J.W., Murchie, J.W., Haak, Brooks, A.M.L., and Cooke, S.J. 2014. Hooking injury, physiological status and short-term mortality of juvenile lemon sharks (Negaprion bevirostris) following catch-and-release recreational angling. Cons. Physiol. 2:cot036.

Davis, M. W. 2007. Simulated fishing experiments for predicting delayed mortality rates using reflex impairment in restrained fish. ICES J. Mar. Sci. 64:1535-1542.

Davis, M.W. & Ottmar, M.L. 2006. Wounding and reflex impairment may be predictors for mortality in discarded or escaped fish. Fish. Res. 82:1-6.

Depestele, J., Buyvoets, E., Calebout, P., Desender, M., Goossens, J., Lagast, E., Vuylsteke, D., and Vanden Berghe, C. 2014. Calibration tests for estimating reflex action mortality predictor for sole (Solea solea) and plaice (Pleuronectes platessa): preliminary results. ILVO-communication. Report nr. 158. 30p. 
Diamond, S.L. & Campbell, M.D. 2009. Linking “sink or swim” indicators to delayed mortality in red snapper by using a condition index. Mar. Coast. Fish.: Dynamics, Manag. Eco. Sci. 1:107-120.

Donaldson, M.R., Hinch, S.G., Raby, G.D., Patterson, D.A., Farrell, A.P., and Cooke, S.J. 2012. Population-specific consequences of fisheries-related stressors on adult sockeye salmon. Physiol. Biochem. Zool. 85:729-739.

Hammond, C.F., Conquest, L.L., and Rose, C.S. 2013. Using reflex action mortality predictors (RAMP) to evaluate if trawl gear modifications reduce the unobserved mortality of Tanner crab (Chionoecetes bairdi) and snow crab (C. opilio). ICES J. Mar. Sci. 70:1308-1318.

Hannah, R.W. and Matteson, K.M. 2007. Behavior of nine species of Pacific rockfish after hook-and-line capture, recompression, and release. Trans. Amer. Fish. Soc. 136:24-33.

Humborstad, O-B., Davis, M.W., and Løkkeborg, S. 2009. Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish. Bull. 107:395-402. 

McArley, T.J. & Herbert, N.A. 2014. Mortality, physiological stress and reflex impairment in sub-legal Pagrua auratus exposed to simulated angling.  J. Expt. Mar. Biol. Ecol. 461:61-72.

Raby, G.D., Donaldson, M.R., Hinch, S.G., Patterson, D.A., Lotto, A.G., Robichaud, D., English, K.K., Willmore, W.G., Farrell, A.P., Davis, M.W., and Cooke, S.J. 2012. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J. Appl. Ecol. 49:90-98.

Stoner, A.W. 2012. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 20:111-135.

Stoner, A.W., Rose, C.S., Munk, J.E., Hammond, C.F., and Davis, M.W. 2008. An assessment of discard mortality for two Alaskan crab species, Tanner crab (Chionoecetes bairdi) and snow crab (C. opilio), based on reflex impairment. Fish. Bull. 106:337-347.

Szekeres, P., Brownscombe, J.W., Cull, F., Danylchuk, A.J., Shultz, A.D., Suski, C.D., Murchie, K.J., and Cooke, S.J. 2014. Physiological and behavioural consequences of cold shock on bonefish (Albula vulpes) in The Bahamas. J. Expt. Mar. Biol. Ecol. 459:1-7.

Trumble, R.J., Kaimmer, S.M., and Williams, G.H. 2000. Estimation of discard mortality rates for Pacific halibut bycatch in groundfish longline fisheries. N. Amer. J. Fish. Manag. 20:931-939.

Yochum, N., Rose, C.S., and Hammond, C.F. 2015. Evaluating the flexibility of a reflex action mortality predictor to determine bycatch mortality rates: A case study of Tanner crab (Chionoecetes bairdi) bycaught in Alaska bottom trawls. Fish. Res. 161:226-234.

Friday, September 19, 2014

Flexibility of using RAMP to determine bycatch mortality rates for Tanner crab caught in Alaska bottom trawls

Tanner crab (Chionoecetes bairdi), AFSC
Yochum et al. 2015 evaluated the flexibility of RAMP methodology by creating a RAMP for Tanner crab (Chionoecetes bairdi) discarded from the groundfish bottom trawl fishery in the Gulf of Alaska and comparing it to a previously established RAMP for unobserved Tanner crab bycatch (encountered gear and remained on the seafloor) from the bottom trawl fishery in the Bering Sea. The authors found that: “The two RAMPs and the overall mortality rates calculated using these predictors were comparable. However, we detected significant differences between RAMPs. While probabilities of mortality were similar between the two studies for crab with all or no reflexes missing, discarded crab with intermediate reflex impairment had lower mortality probabilities than those from the unobserved-bycatch study. Our results indicate that a RAMP may produce more accurate mortality estimates when applied to animals experiencing similar stressors as those evaluated to create the RAMP, through similar methodology.”


Conditions for holding crab after exposure to stressors can control delayed mortality and should be considered in experiments. “There were differential mortality rates by holding type. Higher mortality rates occurred in the on-board tanks (where the crab were held for the first few days) and in the laboratory tank. Moreover, Score-zero crab died in the holding tanks, but not in the at-sea cages. These results indicate that holding tanks contribute additional stressors, either due to transport, additional handling, or stress from being held in an unnatural setting or at temperatures greater than what was experienced in their natural environment. 
Our holding duration of two weeks was sufficient to determine mortality for all Scores. Given that it can take longer for Score-zero animals to die than those with higher Scores, our holding period allowed us to sufficiently capture Score-zero mortalities. However, the death of a Score-zero crab at day 12 may indicate that holding for more than a week confuses mortality attributed to fishing stressors with that from captivity.”


Evaluation of RAMP flexibility was made by comparing results from different studies. “To evaluate the divergence between the RAMPs we analyzed the differences between the studies. The primary difference was in experimental methods, namely the treatment of the crab before assessment. Crab from the Discard-mortality study were exposed to air for 90min on average (range from 9 to 230min) without any “recovery” in water. In contrast, crab from the Unobserved-mortality study had only brief air exposure and were held in water while awaiting assessment (generally less than 15 min), which may have allowed some recovery. 
These differences in air exposure and recovery in water probably affected the relationship between observed reflex impairments and delayed mortality and hence accounted for the discrepancy between RAMPs. Prolonged air exposure and experiencing cold temperatures was linked with increased delayed and instant mortality, number of autonomies for crab, as well as reduced vigor, juvenile growth, and feeding rates (Carls and O’Clair, 1995; Giomi et al., 2008; Grant, 2003; Stoner, 2009; Warrenchuk and Shirley, 2002). Stoner (2009) found that reflex impairment score and exposure to freezing temperatures were nearly linearly related for Tanner crab. Moreover, he found that the different RAMP reflexes had variable sensitivity to freezing temperatures, namely that the chela closure reflex was the most sensitive reflex, and mouth closure was least. Similarly, Van Tamelen (2005) found that the legs and eyes of snow crab cooled faster than the body, perhaps making them more susceptible to cold air exposure. We hypothesize that the prolonged air exposure for the Discard-mortality study likely impaired the crabs’ reflexes and resulted in higher Scores.”


Recommendations made by the authors. “Results from this study indicate that bias can be introduced in mortality rate estimates when using a RAMP created for one study to estimate mortality rates for a different study where the experimental methods differ, especially with respect to air exposure and recovery in water before assessment. However, when RAMP is used only to approximate mortality rates or to make comparisons between gear types or uses, a previously established RAMP could be used with caution, especially if animals with intermediate Scores are not predominant. For more accurate bycatch mortality rate estimates, our results indicate the importance of using a RAMP that was created by assessing animals that experienced similar stressors to those which the RAMP will be applied. Namely, the procedure for assessing the animals should be similar. We feel that the amount of time the animal spends out of water before assessment be standardized within a time range, along with whether or not the animal is allowed to recover in water before assessment, unless these variables are the treatments being studied.” 
“Our results indicate that consistency in methodology and relevance with respect to mimicking actual fishing stresses for the RAMP approach increases the flexibility of RAMP. It is therefore important, when creating a RAMP, to create repeatable methods that are well documented when publishing. RAMP reflexes should be assessed in a specified order to prevent bias from reflexes that are physiologically linked. If there is a reflex that influences the determination of other reflexes it should be assessed last or not at all. Reflexes that are difficult to determine presence or absence should not be used, and it should be clear in the methods what constitutes an “absent” reflex and how immediate mortalities are treated (are they given a Score or classified separately?). In addition, when a RAMP is being created, data should be recorded on all possible stressors, including injury, and evaluated for their contribution to mortality. Moreover, effort should be made (within the logistical constraints of field and laboratory research) to minimize additional stressors that are unrelated to the fishing stressors of interest.”

Thursday, July 10, 2014

Making and Using RAMP in Fisheries

A video is available that explains making and using RAMP in fisheries.


Why is vitality impairment related to mortality?
By definition, healthy animals have full vitality. Vitality becomes impaired as animals become stressed by capture and handling. Severe vitality impairment can result from the effects of physical injury or other stressors, e.g., fatigue, temperature, light, sea state, and air exposure. Maladaptive stress responses or critical injury associated with severe vitality impairment can result in immediate and delayed mortality.
Why score reflex actions and injury?
Reflex actions are fixed behavior patterns that are directly related to vitality impairment, without control by volitional behavior factors, e.g., motivation, hunger, fear, shelter seeking, migration, and reproduction. Reflex actions reflect the state of neural, muscle, and organ functions.
Injuries are directly related to vitality impairment because they can control neural, muscle, and organ functions.
Scoring vitality impairment in general
Any type of reflex action or injury that is related to vitality can be summed to score vitality impairment. The important point is that a sum of presence/ absence scores for vitality characteristics produces an index of vitality impairment. This vitality index can then be used as a measure of variability for sublethal stressor effects in fisheries, as well as a validated indicator and predictor of mortality and survival.

Steps for making and using RAMP in fisheries.

Saturday, April 19, 2014

The importance of vitality in fishing experiments

Key fishing stressor factors, Davis, 2002

Knowledge of key factors controlling fisheries is necessary for sustainable management of fishery stocks. Scientific hypothesis testing in the form of fishing experiments is a necessary component of fisheries knowledge development and validation. Fishing experiments are performed in the field by simulating actual fishing conditions, by actual fishing, and during survey cruises. Fishing experiments can be used to identify key stressor factors that control and contribute to the survival and mortality of captured, discarded, or escaped animals as well as identifying the key factors controlling fishing gear capture efficiency and selectivity.


Trawl captured animals, Robert A. Pawlowski, NOAA Corps

While field fishing experiments represent realistic conditions, they are a matrix of confounded factors which cannot be easily separated into mechanistic hypothesis tests and explanations of factor importance. Effects of factors are often synergistic and prior animal stressor history can alter relative effects of subsequent exposure to factors, e.g., depth changes, injury, elevated temperature, air exposure, and size and species differences.


Flow chart of experimental fishing stressor factors, Davis and Olla 2001

Simulated fishing experiments with factors in controlled laboratory conditions is one way to test hypotheses about mechanistic effects of individual factors and their interactions. However these laboratory experiments are generally viewed as not realistic to field conditions and they are used to identify factors that may be important in the field. Furthermore, modern requirements of animal care laws and committees restrict the use of laboratory fishing experiments by not allowing human application of experimental stressor factors on animals and the use of mortality outcomes. These same laws and committees do not have jurisdiction over field fishing experiments. 

Laboratory trawl tow tank, NOAA RACE

Given that factors are confounded in field fishing experiments, how can we test for effects of factors in the traditional mechanistic hypothesis test? We can test for changes in animal vitality. Since vitality has been shown to be correlated with survival and mortality, it is a useful indicator of animal outcomes before and after exposure to experimental stressor factors. For example, we generally do not know the exposure of animals to stressors prior to experimental manipulation of factors. Not knowing the complete stressor profile is not an obstacle since the animal knows the complete stressor profile and presents vitality levels that have integrated the effects of that profile. Then we can expose animals to additional stressor factors and measure further changes in vitality from their initial levels. 

Important to shift mechanistic thinking from needing to know the effects of individual factors to knowing the effects of fishing variability. Manipulations of time in air and elevated temperature represent differences in fisher sorting and handling behavior on deck and are appropriate for defining the effects of fishing variability. Effects of variation in tow time and catch quantity can be manipulated and are included in the mix of animals landed. The questions of associations among individual fishing stressor factors is left for another day and are more of interest to mechanistic scientists than to managers and fishers. Fishing variability will give a picture of the fishery and its potential effects on animal vitality. By measuring animal vitality, which integrates the effects of stressor factors, you have measured a key master variable that indicates the important effects of fishing.

Vitality is the key variable that can be used to indicate and predict delayed survival and mortality outcomes for discards and escapees from fishing. The relationships between vitality and survival and mortality are defined by captive observation or tagging and biotelemetry experiments. During exposure of animals it is important to insure that all stressor types normally in the fishery in question are present for the population of tested animals (e.g., temperature, air exposure, fatigue, injury) and that a full range (0-100%) of vitality impairment and mortality are observed. Then relationships can be calculated for each species of interest that do not extrapolate beyond available data ranges and that apply to the fishery of interest. These relationships can then be used to predict survival and mortality for animals under any condition of interest in the fishery without the need for further captive observations or tagging.

Consider how scientific peer-reviewers may see this shift from mechanistic thinking and develop thoughts that elaborate the importance of vitality from the animal’s point of view. Some resistance is expected from mechanists who believe that they can attribute cause and effect to individual factors. There is always a matrix of interactions, even under the most restrictive and controlled experimental conditions. There are always interactions and synergisms to account for. As a result, there are associations among factors, rather than cause and effect. In other words, there are causes and conditions associated with effects. 

From the fishing experiment perspective, we set up fishing conditions that are real or that simulate fishing and then measure animal vitality, which is an integrated measure of the effects of interacting factors. It is useful to identify the important stressors by experimentally changing them in fishing experiments; changes in time in air, trawl time, trap retrieval time, depth, season, temperature, catch amount, and injuries. Always remember that there is a hidden context of conditions, i.e., the animals are prestressed by other factors not being controlled. But this hidden context can be accounted for by observing and comparing vitality impairment among animals observed in all treatments, including simply captured animals without additional stressor exposures (using positive controls). This experimental approach is useful both for fishers who wish to modify fishing gear and practices, as well as managers who wish to observe animal vitality and correlate that with mortality and survival.

Thursday, February 27, 2014

Survival of the fittest


Bob van Marlen, IMARES

Work is in progress at ICES to define methods for estimating discard survival in reference to the new European Commission Common Fisheries Policy. The ICES newsletter states, “Under the recently reformed European Commission Common Fisheries Policy (CFP), the practice of discarding fish will be phased out, replaced instead with landing obligations. Under the landing obligation, all catches of regulated species must be landed and counted against quotas unless it has been scientifically proven that the species can survive the discarding process. Species that display a high level of discard survivability will be awarded an exemption, meaning that fishers can return these fish to the sea. Unregulated and protected species will continue to be released.”

The ICES WKMEDS focuses on developing guidelines and identifying best practice for undertaking experiments to investigate the survival of organisms discarded from the catches of commercial fisheries. 


Importantly ICES states, “Techniques for estimating survival under review include captive observation, vitality assessment, and tagging and biotelemetry, each with its own advantages and disadvantages. By using a combination of techniques, as WKMEDS suggests, clear synergies can be achieved and challenges overcome.”

"It's an exciting time", state the workshop Chairs Michael Breen and Tom Catchpole, "this group will be central to an international community that are working together to address the important issue of discard survival."

The WKMEDS group is producing a synthesis of previous discard survival and mortality research with the goal to develop an integrated approach for estimating discard survival. The integrated approach is designed to guide scientists and managers in their evaluation of potential candidate fisheries and species for discarding exceptions to the landing obligation of the CFP. The integrated approach incorporates information about the role of fishing conditions as stressors, species sensitivity to stressors, vitality impairment of captured species, estimated discard survival rates, and cost-benefit analysis of methods for survival assessment in fisheries as well as impacts of discarding on fisheries stocks.

Wednesday, January 8, 2014

Assumptions for use of RAMP

Loggerhead sea turtle escaping trawl, NOAA

Here is a list of key assumptions for the use of RAMP. The list is probably not exhaustive and can be added to as new perspectives and research warrant. These assumptions have been experimentally tested and validated to various degrees by peer-reviewed published research. Further validation is useful and helps to better define possible error terms in RAMP curves. Healthy, control animals are assumed to have a full complement of reflex actions present. See choices for reflex action testing

Vitality is inversely related to reflex impairment. Animal vitality is an abstract concept for which we have strong intuitive notions related to observing absence of injury and presence of behavior, including activity and responsiveness. Reflex actions are fixed response patterns to stimuli that clearly reflect internal state without confounding factors. By using reflex actions to quantitatively measure vitality, the confounding effects of volitional behavior and motivation that are often more related to external conditions can be eliminated. Also animals may not be injured, yet show reflex impairment and reduced vitality associated with other factors (e.g., temperature, exhaustion, hypoxia, and xenobiotics).

Reflex impairment is directly related to stressor types and intensities.  Stressors have been shown to induce reflex impairment, interpreted as symptoms of stress. Therefore reflex impairment is a useful measure of stress. Reflex impairment integrates the effects of stress in whole animal responses that are ecologically meaningful for vitality and fitness outcomes. An impaired animal can have morbidity or decreased predator avoidance, feeding, sheltering, migrating, and reproducing.

Reflex impairment occurs immediately after exposure to stressors. Time course studies for several species have shown immediate impairment after exposure to stressors.  Animals with lower levels of stress can then recover full reflex actions hours to days after exposure to stressors. Reflex actions are sensitive measures of sublethal acute and chronic stress as well as predictors of delayed mortality.    

RAMP curve is different for each species and related to stressor sensitivity. Each species has reflex responses that are evolved for habitat types in which they occur. Differences in reflex types and responsiveness among species are apparent in body types, predator avoidance, habitat choices, and feeding strategies. Some species are easily injured and reflex impaired, while others resist injury or are relatively insensitive to environmental insults (e.g., temperature, hypoxia, and hydrostatic pressure).

RAMP curve used for a species is experimentally derived by inclusion of appropriate types of stressors and animal sizes, ages, and sex. RAMP curves must be derived from reflex impairment observed in animals experimentally exposed to combinations of stressors present in systems of interest. Also animals representing size, age, and sex of interest should be included in impairment experiments. The experiments should result in animals with reflex impairment that ranges from 0 to 100%, with accompanying mortality. The curve must include the complete range of impairment and mortality to avoid extrapolation beyond available data. 

RAMP curve is stable for a species and comprehensive experimentally tested conditions. The stable RAMP curve, with defined conditions of reflex types and testing, can be used among widely different situations for measuring animal vitality, survival, and delayed mortality. Exceptions have been noted for larvae or juveniles with ontogenetically delayed development of reflex actions and spawning anadromous adults which show altered sensitivity to stressors.

Reflex actions in RAMP are given equal weighting rather than weighted differently. Reflex impairment used in a RAMP curve is the result of summing several reflex actions. This approach views the whole animal as the important entity of vitality and fitness. Different reflex actions may be affected by different stressor types. In stressor systems of interest, there are relatively unlimited sets of stressor combinations. Therefore, no a priori expectations of importance for specific reflex actions are made and all measured reflex actions can be equally important. However, the order of reflex action impairment relative to stressor intensity can give valuable information about species sensitivity and associated life history characteristics. 

Observers are assumed to objectively score presence or absence of reflex action in a replicable manner. This assumption is satisfied by using the “rule of doubt”. If any doubt exists about the presence of a reflex action, the action is scored as absent. If the reflex action is present without a doubt, it is scored as present. Further controlled comparisons of reflex scoring among observers is warranted to better define possible observer error terms.

RAMP mortality and survival predictions are dependent on the accuracy of captive holding, tagging, and biotelemetry experiments. To calculate RAMP curves, animals are observed for delayed mortality after initial exposure to experimental stressors. Mortality observed with captive holding is simply related to initial stress, assuming that holding conditions are not stressful.  Mortality observed with tagging or biotelemetry includes sources other than initial stress (e.g., additional stressors, predation, disease, and food limitation)(Thorsteinsson 2002).

Sedna, mother of all sea creatures, K. Sagiatok

Wednesday, November 27, 2013

Using RAMP to reduce crab mortality associated with trawl gear encounters


Tanner crab, AMCC


Snow crab, AFSC

RAMP measures for crab mortality have been validated and used in field experiments to help reduce the effects of trawl gear encounters by crabs. Hammond et al. 2013 published the results of a study on Tanner and snow crab mortality associated with trawl gear encounters and they are quoted below:

“The study used the RAMP model to investigate whether modifications to the bottom trawl gear, specifically sweeps (cables connecting doors to trawlnet) and footrope (ground-contact gear attached to the trawlnet), reduced the unobserved mortality of snow and Tanner crab. The RAMP models for these species from Stoner et al. (2008) were augmented with additional observations that more than tripled the sample sizes. Alternative configurations of the resulting RAMP models were compared, examining the effects of sex, size, and shell condition, supplementing with injury observations, and application as a categorical or continuous variable. RAMP-estimated mortality rates were then applied to determine if alternative fishing gear reduced unobserved mortality compared with conventional fishing gear. Specifically, mortality rates for raised trawl sweeps (Rose et al., 2010) and larger diameter footropes were compared with rates for conventional configurations (Rose et al., 2013). Both modifications create larger spaces under the gear for crab escapes. These mortality rates were also compared across sex, size, and shell conditions.”

Reflex actions that were tested for RAMP:



“A major advantage to RAMP is the simplicity of just testing reflexes which can be done in hand, thereby removing the need to retain animals for prolonged periods or to run costly and time consuming physiological lab tests. In the case of Chionoecetes spp. interacting with the trawl gear, Stoner et al. (2008) and this study have shown the reflex impairment score to be a statistically robust predictor of delayed mortality. The effect of a single additional reflex impairment multiplies the odds of mortality (p/(1- p)) by the exponentiated slope from the logistic regression (Faraway, 2006). The multipliers for snow and Tanner crab were 3.0 and 2.9, respectively. Thus, the absence of an additional reflex would roughly triple a crab’s odds of mortality.”


RAMP curves for Tanner and snow crabs:

“Logistic regression analysis of reflexes to predict mortality (RAMP model) indicated that sex, shell condition, and size did not significantly affect the relationship between reflex impairment scores and mortality. When considering the effect of the gear type, logistic regression of the RAMP-predicted mortality found that gear type, sex, shell condition, size, and the gear × shell condition interaction were significant predictor variables for snow crab mortality. Tanner crab showed gear type, shell condition, and their interaction to be significant with the footrope effect. In addition, gear type, shell condition, their interaction, and size were significant with the effect of sweeps. Although shell condition was shown to be statistically significant, the overall mortality was lower with an alternative gear than with a conventional gear, strengthening the case that alternative sweeps and footropes could be used to help reduce unobserved mortality.”

Experimental trawl gear used in study:


Results of gear modification on crab mortality:



“Previous studies have shown that reflex impairment is a sign of stress that can be correlated with mortality outcomes in fish and crab (Davis and Ottmar, 2006; Davis, 2007, 2009; Stoner et al., 2008; Humborstad et al., 2009; Stoner, 2009). One of the limitations of this approach is that we cannot account for the possible mortality that occurs as a result of predation on the crab or fish due to its potentially weakened state from its encounters with the gear. Thus, the RAMP model yields a good relative measure of mortality, if not an absolute measure of mortality. Our study took the RAMP model one step further and used it to assess whether alternative sweeps and footropes could reduce unobserved fishing mortality; the data showed this to be the case.”

“This study is one example of many possible practical applications of the RAMP model. In the context of bycatch reduction technology and modified fishing gear, the RAMP model could prove to be a very useful tool to determine if the alternative gear or modifications to the current fishing gear could reduce the many types of bycatch mortality.”



Wednesday, September 18, 2013

Estimating dungeness crab bycatch mortality rates

Yochum


Two approaches are used to estimate dungeness crab bycatch mortality, allowing for a field validation of the RAMP approach (Yochum et al. 2013).

Yochum et al. 2013

Preliminary results are available for using RAMP to estimate dungeness crab bycatch mortality in Oregon fisheries; including commercial crabbing, recreational crabbing, and trawling.

Yochum et al. 2013

More information on this project is available (YochumStoner and Yochum 2012, and NOAA 2013).