Showing posts with label behavior. Show all posts
Showing posts with label behavior. Show all posts

Monday, October 24, 2016

Yelloweye rockfish barotrauma and reflex impairment after capture in shallow and deep water

Yelloweye rockfish, Neil McDaniel
Rankin et al. 2016 report on barotrauma and reflex impairment observed for recompressed yelloweye rockfish in situ. They evaluated orientation, reaction to noise and motion stimuli, and visual and swimming capability. 
Behavior of recompressed fish. Top fish, presence of orientation and vision-dependent movement. Bottom fish, absence of vertical orientation in live fish. Rankin et al. 2016
The authors conclude, “Recompression is a valuable treatment for discarded rockfish that would otherwise be too buoyant to return to depth without assistance. However, the loss of reflex actions as basic as vertical orientation, along with the evidence we found of visual compromise in deep-dwelling recompressed yelloweye rockfish, is concerning, as are the long-lasting physical injuries and lack of neutral buoyancy observed in the weeks after capture and recompression. At a minimum, these effects indicate limits to a rockfish’s ability to move effectively, find refuge, and avoid predators upon release.
The findings from these two studies, which reveal severe and lasting injuries, as well as behavioral compromise of recompressed deep-water yelloweye rockfish, reinforce the importance of avoiding fishing contact with deep-dwelling yelloweye rockfish and maintaining spatially-managed rockfish conservation areas closed to fishing.”

Wednesday, August 31, 2016

Stressors, vitality impairment, and survival of fishes

Developing rapid visual in situ trait assessment (reflex actions, injury) associated with vitality impairment.



Video slideshow (2:06) discussing stressors, vitality impairment, and survival of fishes in fisheries contexts.

Sunday, February 7, 2016

Why observe several reflex actions together to measure animal vitality?


Why observe several reflex actions together to measure animal vitality? The short answer is that animals are whole beings; a summary collection of component parts and their interactions in response to stimuli.

Animals are constructed of biochemical and behavioral components that interact to form a whole; capable of responding to stressors. The interactions of stressors and behavior are also important for prediction of vitality impairment and survival. Reflex actions are fixed behavior patterns that include biochemical, muscle, organ, and nerve functions.

Efforts to identify factors that can control vitality and predict post-release survival and mortality of captured animals generally strive to identify single important variables. For example, temperature changes, injury, exhaustion, and hypoxia can control vitality and survival. For simplicity, single factors are statistically modeled as predictors for survival. Factor interactions are rarely considered because of their complexity.

Patterns of vitality impairment vary with species and contexts. Observing impairment of several reflex actions and possible injury in a defined context integrates the effects of multiple stressors, contexts, and their interactions on animal impairment and survival. Measurement of single reflex action impairment can miss the range of vitality that spans from excellent to moribund. 

Stoner 2012 (crabs)

Below are several examples of the cascading nature of impairment observed as individual reflex actions cease to function in a spectrum of stressor intensities. Reflex actions with higher proportion of impairment are impaired before those with lower percentage. Note that patterns of impairment vary with taxa and context.

Davis 2010 (walleye pollock, coho salmon, northern rock sole, Pacific halibut)


Uhlmann et al. 2016 (plaice, sole)

Forrestal 2016 (triggerfish)

Forrestal 2016 (yellowtail snapper)

Danylchuk et al. 2014 (lemon shark)


Sampson et al. 2014 (mottled mojarra)

Stoner 2009 (Tanner crab, snow crab)

Stoner 2012 (spot prawn)

Wednesday, September 2, 2015

What is RAMP: reflex action mortality predictor?

Reflex actions and injury traits in crab scored for impairment (Stoner 2012, Yochum et al. 2015).

Reflex actions and injury traits in sharks scored for impairment (Danylchuk et al. 2014).

Reflex actions and injury traits in fish scored for impairment (Davis 2010, McArley and Herbert 2014).

Reflex actions and injury traits in turtles scored for impairment (LeDain et al. 2013, Stoot et al. 2013).
Photos; crab - Farm to Market, shark -  Swell Brains, fish - DEEP, turtle - Aquatica.

Any animal has reflex actions and potential injury traits; see diamonds in figures. These fixed traits can be observed, scored present or absent, and summed to form an animal vitality impairment score. Animal vitality is a gestalt of reflex and injury traits that we can observe as a whole animal, active and responding to stimuli. Vitality impairment and mortality are correlated and this relationship is expressed as RAMP, reflex action mortality predictor.

Impairment of well-defined reflex actions and injury types may differ for each species, dependent upon their natural history and phylum.  These species traits of reflex actions and injury types can be scored and combined to express the percentage of whole animal impairment. No impairment represents a healthy animal with all actions present and all injury absent. Increasing absence of reflex actions and presence of injury types is increasing impairment and is correlated with mortality.


Sublethal and lethal zones associated with reflex action impairment scores (RAMP) in walleye pollock, rock sole, sablefish, and Pacific halibut (Davis and Ottmar 2006). For these species at specific transition impairment values, a rapid rise in mortality is observed after a small increase in reflex impairment. 

These curves illustrate the expression “you are alive until you are not”. Animals live in various states of vitality impairment that are correlated with stress. Above a quantifiable level of vitality impairment, animals begin to show mortality, correlated with continued increase for impairment. The distribution of reflex impairment and injury in a group of animals is a measure of population vitality. 

For fish species (Davis 2010, McArley and Herbert 2014), animals have several types of reflex actions which can be secondary or primary. One action group contains secondary peripheral actions that are part of swimming and defensive behavior (fin erection and startle). Impairment of these reflex actions generally indicates sublethal stress effects and is associated with increasing stressor intensity (duration or strength). A second action group contains primary body functions (orientation and coordinated breathing). Impairment of primary body functions generally indicates delayed mortality after stress induction. In the same way, for crustacean species (Stoner 2012, Yochum et al. 2015), loss of leg reflex actions are associated with sublethal stress effects. Loss of eyestalk and mouth actions are associated with delayed mortality after stress induction.

Sunday, August 2, 2015

Triage for captured and released fisheries species: research and survival

Will they survive? (The Guardian, 2013)

Vitality impairment can be linked to post-capture mortality in fisheries bycatch. Vitality impairment can be estimated by direct observation of animal activity, responsiveness, and injury. For each critical fisheries species in crabs, fishes, sharks, and turtles, reflex actions that are consistently present in healthy, uninjured individuals are listed as control levels. Impairment is signified by loss of reflex action types and addition of injury types after capture.  

Reflex actions are fixed, consistent animal behavior patterns that can be triggered by perception of external stimuli (light, sound, smell, gravity, touch). Stimulation of reflex actions is not controlled by body size, motivation, strength of stimulus, or fear. Reflex action traits summed as a whole animal can be an expression of vitality (Davis 2010). In contrast, volitional behavior can be altered by body size, motivation, strength of stimulus, fear, cognition, and as such is not a controlled measure of vitality.

With the species reflexes and potential injury lists, observations of captured animals can be made in commercial and sport fisheries. Patterns of significant impairment can be determined and related to fishing context and species (Raby et al. 2015). These patterns help identify the relative effects of fishing gears, handling, and physical factors (air, temperature, light, pressure) on impairment and potential survival and mortality.


Figure shows overlap between information on animal physiology and fisheries biology, adapted from Horodysky et al. 2015 and modified to show vitality information. Measures of vitality include reflex impairment and injury, which are whole animal measures that are ecologically relevant, linking physiological and population level research and hypothesis testing. Volitional behavior is coordinated whole animal movements beginning with perception and motivation, followed by attraction and aversion to various stimuli (injury, threat, food, shelter, species mates, migration).

Patterns of vitality impairment can guide research questions and priorities to triage fisheries for treatment of bycatch mortality and enhancement of survival. Vitality impairment can measure the efficacy of engineering fishing gears to increase bycatch survival. 

Tuesday, March 10, 2015

Snow crab discard mortality

Snow crab in Bering Sea pot fishery (ASMI).

Over 19,000 snow crab were evaluated in Bering Sea pot fisheries 2010-2012 for impairment using the RAMP method (Urban 2015). The estimated discard mortality rate was 4.5% (s.d. = 0.812), significantly below the rate used in stock assessment models. The author concludes: “ In this study, the results of RAMP observations showed that at the range of winter temperatures typically encountered by the Bering Sea snow crab fishery, nearly all discarded crab experienced no reflex impairments. Therefore, we estimate that they should have only a 4.8% chance of short-term mortality. Injuries caused by the fishery occurred at very low levels and so should also have a minimal effect on discard mortality rates. However, because long-term survival rates and the effects of reduced crab vitality are difficult to predict, an estimate of the total impact of discard practices on snow crab stocks is not possible. Even with these uncertainties, the current empirical evidence indicates that the assumed discard mortality rate of 50% is conservative.”

Figure 1. The upper panel shows the relationship between the temperature at the snow crab sorting table and the predicted mortality of snow crab based on reflex impairments. Error bars indicate the 95% CI. The lower panel shows the proportions of the temperatures recorded, while the observations were being made during the 2010–2012 fisheries (Urban 2015).

Friday, February 13, 2015

RAMP method video developed by ILVO

ILVO (Belgium Institute for Agricultural and Fisheries Research) has developed RAMP methods for three species of flatfish (plaice, sole, and dab) in European fisheries.

The first video sets the scene and explains the potential relevance of this method in relation to the recently reformed European Common Fisheries Policy.


The second video explains and demonstrates reflex tests in more detail and may guide other investigators in defining and recognizing reflex actions.


An excerpt from the video text explains, “A staggering amount of commercially-caught fish is being thrown overboard. Some say that all of those discarded fish are either dead before they hit the water or they die soon after, victims of predation or injury. But others argue that some of those species are strong enough to survive after being discarded and live long enough to reproduce. The European Common Fisheries Policy was recently reformed and will now phase in a ban on discarding, meaning that fishers will have to land everything they catch. The idea behind the ban is to stimulate more selective fishing techniques, because it will be in the fisher’s interest to only catch the most valuable fish. However, by landing everything, this ban risks killing more fish than before. If a juvenile fish lives long enough after being discarded to spawn new fish, it should be given that opportunity. For this reason, the discard policy provides an important exception: if a certain species can be scientifically proven to have a high chance of survival, fish of that species should be thrown back after catch. Researchers at the Institute for Agricultural and Fisheries Research (or ILVO) in Ostend, Belgium are testing the most commercially important species of flatfish - plaice, sole and dab – for their likelihood of survival.”

Sunday, January 11, 2015

Elements of vitality testing and delayed mortality in fisheries


Conceptual diagram outlining elements for vitality testing and delayed mortality in fisheries. Fish are captured and environment sampled. Fish become stressed which is measured as impairment from control health by observing reflex actions and injury types. Stressed fish are held for captive observation to determine delayed mortality. Bias and error can be introduced by initial impressions of vitality before testing reflex actions and injury, by differing observer scoring opinions, and by holding conditions that are stressful for the fish. 

Scoring vitality impairment is most difficult when observer decision is used. Training observers is a key part of RAMP development. Reflex actions (RA) are clearly present in control animals, and observers do not need decisions to score present. As impairment increases, scoring RA requires increasing observer decisions about whether sampled RA are present. The decision can be based on how control RA appear to trained observers. Each observer will have different opinions that can be influenced by their initial impressions of the animal and of the stressor treatments the animal has been exposed to.

Initially after stress induction, RA impairment increases and mirrors stress levels, while mortality is not evident. When animals reach a critical impairment level, replicates begin to show mortality, which increases rapidly over small changes in RA score. At highest levels of impairment decisions are less frequent as the animal ceases general movement and responsiveness.

Friday, January 9, 2015

Questions and answers about observer bias in RAMP



Q: What are the options when grappling with cognitive/expectation and sampling biases in manipulative fisheries research experiments under sometimes challenging conditions at sea?

A: Begin by training and calibrating observation. We all recognize vitality when we see animals with high vitality. This recognition is based on rapid visual assimilation of information about several traits including injury, activity, and responsiveness. We cannot separate our cognitive impression of vitality level from the act of observing individual traits and scoring their presence or absence. Presence or absence of reflex actions is scored relative to control animals which have a set of reflex actions consistently present. Reflex actions range from clearly seen through weakening stages to clearly absent. As the animal becomes more stressed and impairment increases, the interaction of impression and scoring observations contributes bias. 

If observers are trained to clearly recognize a suite of real reflex actions in the species of interest, then correctly recognizing the impairment or absence of those reflex actions should be a realistic accomplishment. An experiment to test for the effect of observer bias and variability in scoring reflex actions could be conducted in the lab or field if enough fish and observers are available. Stress some fish (air exposure) to produce replicates over a range of RAMP impairment scores and have the observers sample reflex actions. Blind the study treatments from observers. Estimates for observer bias from stress studies with different species will be useful for improving observer training by identifying protocols that need to be more defined and less subject to observer opinions. Alternatively, Benoît et al. (2010) modeled observer bias as a random factor. 

Q: How can we achieve a blinded experimental design if the experimenter who assigns or is aware of experimental treatments also scores reflex impairment on board (commercial) vessels?

A: Perform some fish experiments on observer bias outlined above and decide how important observer bias is after training with well-defined protocols for testing individual reflex actions. The bias problem may be mitigated by training using clear definitions of present or absent for reflex actions. I will assume that the vessel captain is conducting the experimental fishing treatments. So the captain could be given treatment conditions by the scientist and then could conduct fishing by assigning treatments randomly without the knowledge of the scientist observer. However tow time, soak time, or haul time and catch volume will be apparent to observers. 

Q: Is an observer influenced in his/her ability to score reflexes if, apart from knowing the treatment, also the condition of an organism is evident even before the scoring begins? Is there any option to minimise this?

A: We cannot separate the correlation between overall impression of vitality and scoring reflex actions. However, we can be trained to clearly recognize the presence of reflex actions. Any impairment through weakness, delay, or loss of action is scored absent.  The key method for minimizing observer bias for reflex actions is to clearly establish what the suite of reflex actions look like when they are consistently present in control animals. If presence of a reflex action is difficult or inconsistent to determine then it is not a good candidate for testing. Any deviation from control appearance in action strength or delayed time for action can be considered impaired and scored absent. The goal is to eliminate variability in detection of presence for reflex actions. By sharpening the decision criteria, bias and variability can be reduced. This idea can be tested using the outlined experiment design.

Q: Seeing that vitality assessments of discarded fish in Europe are now being developed in several places is there a need to also quantitatively evaluate the ability of different observers to score reflexes consistently? What would be the best setup for such a training exercise? 

A: As mentioned above, a stress experiment can be conducted to quantify observer bias and consistency.  With enough replicate fish and observers, an air stress experiment could produce fish with varying levels of reflex action impairment. These fish could be sampled by observers with defined criteria and using an experimental design for testing the effects of observer variability and bias. The effect of training could also be evaluated using this design.

Thursday, January 8, 2015

Observer bias and RAMP

Cognitive bias (The Daily Omnivore, 2012)

Subjective scores for animal behavior can be biased by observer opinions about experimental treatment differences and resulting outcomes (Tuyttens et al. 2014). The research paper title expresses a fundamental bias of human perception and belief: “Observer bias in animal behaviour research: can we believe what we score, if we score what we believe?” The problem is to separate belief from observation. This may be accomplished by clearly defining and adhering to consistent protocols for behavior observation and analysis.

RAMP relies on subjective scoring for presence or absence of reflex actions or injury types. Control fish have a suite of reflex actions that are consistently and clearly present when tested for. When an observer begins to notice the weakening or complete loss of a reflex action, that action is scored as absent (impaired). There will be variation among observers in the decisions about when reflex actions are impaired and bias will vary with experimental protocol. 

Because RAMP is an aggregate vitality impairment index summed from control reflex actions and potential injury types, a RAMP score includes the observer bias for each included reflex action and injury. Close correspondence of RAMP scores and mortality is noted at low and high scores because observers clearly know when fish are active and when fish are severely injured and impaired. Relationship of mortality and RAMP is more variable at intermediate levels of impairment and mortality in part because observer opinion about impairment is more variable. To reduce observer bias, RAMP for a species must be designed to include reflex actions and injury types that can be clearly separated into present or absent scores. Also experimental treatments can be administered without informing observers.   

Vitality of a stressed fish is readily observed. We are primarily seeing the activity, responsiveness, and injury presented by the animal. The most widely used vitality index in commercial fisheries is for the halibut fisheries of the northeast Pacific Ocean (AFSC Observer Manual 2015), based on Appendices S-X for trawl, pot, and longline fisheries.  For trawl and pot fisheries, three levels of vitality (excellent, poor, and dead) are scored by observing injury types and spontaneous activity, startle response to touch, and operculum clamping. For longline fisheries, vitality is scored by observing injury types. Mortality rates are assigned to vitality impairment scores using tagging experiments (Williams 2014).

Vitality impairment codes (Benoît et al. 2010).

Benoît et al. (2010) constructed a fishery vitality index with four levels of impairment (excellent, good, poor, moribund) that are scored by observing injury types, spontaneous body movement, startle to touch, and operculum clamping. Their vitality index and the halibut vitality index use the progressive increase of injury and impairment of activity to score vitality impairment. Benoît et al. (2010) corrected for observer bias by using a random effects term in their statistical model. 

Reflex actions scored for presence or absence in RAMP for snapper (McArley & Herbert 2014).

The RAMP vitality index alters impairment scoring to only include presence or absence of a larger number of injury and reflex actions. This shift attempts to introduce more information about activity and injury types that may be associated with mortality and to reduce decisions about degree of impairment for individual activity and injury traits. Impairment is observed as a progressive increase in the number of reflex actions that become absent and the number of injury types that become present when compared to control animals. Because observer bias can be introduced in scoring, observer protocols must be well defined with clear rules for presence or absence of traits. Observer judgements about correspondence between experimental treatments and outcomes could also be eliminated by careful experimental design.

Friday, December 19, 2014

Belly up: Righting reflex action time to recovery correlated with delayed mortality?

Upside down fish in market tank (Hong Kong)

RAMP incorporates presence/absence of several reflex actions and injuries to measure vitality impairment and potential delayed mortality. A simpler method may be possible by measuring time for recovery of orientation when fish are placed upside down in water. This method can be tested.

Place a fish upside down in water and observe the time until the fish returns to normal orientation. This duration is a measure of vitality impairment. Longer recovery times indicate greater vitality impairment and data can be included in statistical models for relationships among fishery stressors, injury, righting time, and delayed mortality. We can test the relationship between righting impairment and delayed mortality. 

Righting reflex action is a central behavior that is the nexus of neural, muscle, and organ actions and is intimately linked with loss of physiological regulation associated with stressor exposure.  Olfactory impairment is another example of a central function that is correlated with delayed mortality (in humans, Pinto 2014).

Body orientation is a sensitive measure of fish consciousness. Presence or absence of righting can be included in the RAMP score. Loss and recovery of orientation is a well known symptom for induction of and recovery from fish anesthesia and is used as an indicator of morbidity and delayed mortality in stress experiments (Davis and Ottmar 2006, Szekeres et al. 2014, Raby et al. 2015).  

Measuring replicate animals for the time to righting recovery and delayed mortality after a stressor experiment can test the correlation between righting impairment and delayed mortality. If the correlation between righting and delayed mortality is valid and strong, then we have a rapid method for predicting discard mortality on board fishing vessels without need for holding or tagging fish to confirm their survival. Research groups on fishing vessels can observe fish during catching, landing, sorting, and discarding under differing stressors; seasons, water temperatures, tow durations, catch quantities, species mixes, and sorting times.

Saturday, October 18, 2014

Survival of schooling small pelagic fish discarded from purse seine fisheries

Greenback horse mackerel, Trachurus declivis 



Vitality impairment and RAMP can be used to determine survival of discarded schooling small pelagic fish in purse seine fisheries.  When catch is too large, fish are “slipped” for the net and discarded. These discarded fish are usually exposed to some level of hypoxic conditions associated with crowding in the purse seine. Elevated temperature in surface water may be a stressor. Skin abrasion and scale loss can occur in the net. Many small pelagic species (mackerel, sardine, anchovy, smelt, herring) caught in purse seines are obligate or facultative schoolers that reflexively form groups mediated by the optomotor response. Vitality impairment can be tested for individual fish or groups. See Davis and Ottmar, 2006 for testing groups of free-swimming fish. Schooling fish seek the company of species mates, so testing groups of schooling fish is probably the most informative method. How is this testing done and linked with delayed mortality in captive observation tanks?    

RAMP links vitality impairment scores with delayed mortality scores. The RAMP estimate for delayed mortality is only as good as the mortality estimates from captive observation or tagging experiments. How many replicates are needed in captive observation experiments? The purse seine schooling species need to be held in groups. A replicate group size of ten fish is good for schooling. These fish must be held in good water quality and circulation, in a circular tank size that allows schooling. For initial RAMP formulation, you will need 10 replicate groups of ten fish each. Observations of reflex action impairment and delayed mortality should be made over a range of stressor intensities that result in delayed mortality of 0 to 100%. Then replicate vitality impairment scores are linked with replicate delayed mortality scores to form the RAMP which can be validated with further experiments and replication.

Suuronen, 2005  Stressors in capture and escape of fisheries.

Fish can be sampled from any point on the fishing process, depending on the stressors of interest. Reflex action testing can be made on a group of fish held in a circular observation tank big enough for schooling (See Davis and Ottmar, 2006).  Possible reflex actions for testing include: orientation; schooling; rheotaxis; startle response to sound or light; swimming to bottom of tank. Injuries can also be noted; abrasion, scale loss. After testing the replicate group can then be placed in a holding tank and monitored for delayed mortality through five to ten days. 


Herring lose schooling, orientation, and tail beat frequency increases as the purse seine is drawn smaller (Morgan, 2014). Fatigue and hypoxia are possible stressors in purse seines (Tenningen 2014).

For discard species caught in purse seines that are not schooling fish, or are larger schooling fish, individual fish can be tested for vitality impairmentReflex actions tested can include: body flex, orientation, eye roll, operculum or mouth clamp, tail grab, righting, startle.  These fish can be tagged for identification and held together for five to ten days in tanks to determine delayed mortality.

Sunday, October 5, 2014

RAMP is a component of an integrated conservation approach to coho salmon bycatch mortality management


Results of Raby et al. 2014 demonstrate the integration of vitality impairment and coho bycatch mortality estimation and management.
“We have provided an estimate of bycatch mortality for an endangered population of coho salmon captured in an aboriginal beach seine fishery, based on three years of tracking fish released from the fishery.” 
“Among all the variables we tested as predictors of mortality, none were significant except for RAMP score, whereby fish with higher RAMP scores (more impaired) were less likely to be successful migrants (Table 3, Fig. 4).”
Distinguishing between natural mortality and bycatch mortality. 
“An alternate approach to calculating a bycatch mortality rate that attempts to distinguish bycatch from natural mortality, is to use RAMP scores and their mortality rates at each level of impairment, and assume negligible bycatch mortality for the fish that were least impacted (vigorous at release).”
“Since some in-river mortality is natural, there is a need to attempt to differentiate mortality caused by the capture itself. To do so, RAMP scores can be used whereby coho salmon released with little or no reflex impairment (vigorous) are assumed to experience no post-release bycatch mortality. Using that conservative assumption, the post-release mortality rate for those fish can then be used as a baseline within the data set. Additional mortality above that baseline that occurs at higher levels of reflex impairment can then be assigned to the fishery (see Fig. 4).”
Using RAMP to monitor condition of bycatch and improve their survival
“The expanded validation of the RAMP approach in the present study provides confirmation that this simple technique is ready for use in this fishery if needed (Raby et al. 2012). The observers in the fishery could easily be taught how to conduct RAMP assessments to monitor the condition of bycatch in real time, provide advice to their crews on how to improve fish condition, and make decisions about whether individual fish should be revived using recovery bags.”

Friday, October 3, 2014

Human delayed mortality can be predicted using olfactory impairment

Olfactory impairment in humans was measured by error rate in olfaction tests. Increasing number of errors in olfaction tests were related to increasing 5-year mortality rates in a logistic regression (PLoS ONE). 

The human logistic relationship between olfactory impairment and 5-year delayed mortality is a powerful method for predicting delayed mortality and is similar to other animal RAMP relationships between reflex impairment, injury, and delayed mortality. Olfactory impairment can be easily measured in human and animal clinical settings and can easily and automatically be measured in aquaculture contexts by analysis of animal distributions and activity in rearing facilities. Given the fundamental nature of olfaction, one would expect the relationship between olfactory impairment and delayed mortality to be generally present among animal phyla and this can be tested in clinical and field settings.

Pinto et al. 2014 state, “We are the first to show that olfactory dysfunction is a strong predictor of 5-year mortality in a nationally representative sample of older adults. Olfactory dysfunction was an independent risk factor for death, stronger than several common causes of death, such as heart failure, lung disease and cancer, indicating that this evolutionarily ancient special sense may signal a key mechanism that affects human longevity. This effect is large enough to identify those at a higher risk of death even after taking account of other factors, yielding a 2.4 fold increase in the average probability of death among those already at high risk (Figure 3B). Even among those near the median risk, anosmia increases the average probability of death from 0.09 (for normal smellers) to 0.25. Thus, from a clinical point of view, assessment of olfactory function would enhance existing tools and strategies to identify those patients at high risk of mortality.”

The human study controlled for the mortality effects of age, gender, socioeconomic status, and race. Additionally, “We excluded several possibilities that might have explained these striking results. Adjusting for nutrition had little impact on the relationship between olfactory dysfunction and death. Similarly, accounting for cognition and neurodegenerative disease and frailty also failed to mediate the observed effects. Mental health, smoking, and alcohol abuse also did not explain our findings. Risk factors for olfactory loss (male gender, lower socioeconomic status, BMI) were included in our analyses, and though they replicated prior work [41], did not affect our results.” Note that the study did not control for effects of possible episodic exposure to toxins or injury that may result in temporary or permanent olfactory impairment not related to death.

Olfactory response is an involuntary response to a stimulus, and may be considered a reflex action. In the human study, presence or absence of smell detection for rose, leather, orange, fish, and peppermint were summed and related to delayed mortality. Olfactory responses to various substances can be scored as present or absent and summed to predict delayed mortality. In the same way, the RAMP method is an example of presence-absence scoring with summation of reflex impairment and injury scores to predict delayed mortality.  Measuring and summing whole animal responses, i.e., olfaction, reflex actions, and injury to stimuli is a powerful method for observing the effects of stressors and aging on delayed mortality.   
We believe olfaction is the canary in the coal mine of human health, not that its decline directly causes death. Olfactory dysfunction is a harbinger of either fundamental mechanisms of aging, environmental exposure, or interactions between the two. Unique among the senses, the olfactory system depends on stem cell turnover, and thus may serve as an indicator of deterioration in age-related regenerative capacity more broadly or as a marker of physiologic repair function [13].”
Clearly, measurement and summation of presence-absence for whole animal involuntary characteristics (olfaction, reflex actions, and injury) is a powerful way to predict delayed mortality in humans and other animals.

Saturday, June 7, 2014

Ecological significance of cold shock: reflex action impairment in bonefish


Fast moving weather fronts or upwelling events can rapidly drop water temperature in sub-tropical areas. Effects of cold shock were studied in bonefish by Szekeres et al. 2014. Fish at 25oC were exposed to either 18oC or 11oC for 2 hours. Ventilation rate and reflex actions were monitored throughout the cold shock. Five reflex actions were tested before and after cold shock, including equilibrium, body flex, vestibular-ocular response, tail grab, and head complex (Brownscombe et al. 2013). Given that the focus of this study was on sub-lethal effects, cold shock exposure was terminated if the fish lost equilibrium. Blood plasma and swimming ability, defined as line crossings and time to loss of equilibrium associated with chasing were also sampled during the experiments.

The authors found that “Behavioral responses of bonefish to cold shock were generally characterized by decreased ventilation rates for the 7°C below ambient treatment with little reflex impairment, and extreme behavioral and reflex impairment in the 14°C below ambient treatment. Fish in the latter treatment exhibited varying periods of hyperactivity followed by impaired or no swimming ability, reduced responsiveness, and the loss of equilibrium, which are all common traits of cold shock exposures.” Experiments with bonefish exposed to the 14°C below ambient temperature were terminated after 30 minutes, as fish lost equilibrium.

Importantly, the authors found “Despite the fact that bonefish in the 14°C below ambient treatment had almost complete reflex impairment during the exposure and sustained high blood lactate concentrations than other treatments, post-exposure swimming abilities were similar to handled control fish. This suggests that although fish become highly behaviorally impaired at colder temperatures, if they are able to escape to more suitable conditions, swimming abilities quickly return and they are unlikely to experience further fitness consequences due to behavioral impairment (e.g. higher predation risk).” 

There “are many facets that have yet to be explored as this research was the first attempt to understand the sub-lethal consequences of cold shock on these sub-tropical fish species. Our research only considered swimming ability as a proxy to understand predation risk in the wild. Future research may focus on determining whether the fish experience compromised disease resistance, poor foraging decisions, changes to fecundity or altered developmental stages. The combination of a changing climate and the economic importance of bonefish throughout the Caribbean warrant more research to be conducted on this species and their responses to an array of changes to ambient conditions.”

Thursday, May 15, 2014

Cautionary tale of rockfish barotrauma and survival: looks can be deceiving

 Yelloweye rockfish, ADFG

Canary rockfish, WDFW

Canary and yelloweye rockfish were captured by Hannah et al. 2014 at 46-174 m depth, retrieved to the surface, and then submerged to depth in specialized sea cages for evaluation of survival.

The authors state, “The external physical signs associated with extreme expansion and retention of swimbladder gas (pronounced barotrauma), including esophageal eversion, exophthalmia and ocular emphysema, were common for both species at these capture depths and were more frequent than in prior studies conducted at shallower depths. Despite similar frequencies of most external barotrauma signs, 48-h post-recompression survival of the two species diverged markedly as capture depth increased. Survival of yelloweye rockfish was above 80% across all capture depths, while survival of canary rockfish was lower, declining sharply to just 25% at capture depths greater than 135 m. Fish of both species that were alive after 48 h of caging displayed very few of the external signs of pronounced barotrauma and had a high submergence success rate when released at the surface.”

Survival and submergence success of canary and yelloweye rockfish, Hannah et al. 2014

Difficulty for evaluating vitality and potential survival by observing barotrauma symptoms and reflex actions is outlined by the authors. “The divergence of 48-h post-recompression survival of canary and yelloweye rockfish as depth of capture increased beyond 135 m shows how difficult it can be to evaluate the survival potential of rockfish with barotrauma based on their appearance at the surface. Most specimens of both species captured at these depths showed some signs of pronounced barotrauma, yet nearly all of the yelloweye rockfish survived following recompression while many of the canary rockfish perished as capture depth increased beyond about 75 m. Studies of post-recompression release behavior also support the notion that surface observations are not indicative of survival, at least for rockfish that tend to retain most of their expanded swimbladder gas (Hannah and Matteson, 2007; Hannah et al., 2008a). The retained gas can make it very difficult or impossible for rockfish to submerge (Hannah et al., 2008b; Hochhalter, 2012) and interferes with the evaluation of reflex behaviors, which have been shown to be useful predictors of survival in other captured and discarded fishes (Davis, 2007; Davis and Ottmar, 2006).”

With regards to stock management, the authors state, “The estimates developed in this study can be very useful for informing the management of hook-and-line fisheries that encounter these two overfished species, especially in combination with data on submergence success as a function of capture depth, like that provided by Hochhalter (2012) for yelloweye rockfish. For example, a primary recommendation from prior studies of post-recompression survival and submergence success for these two species was that hook-and-line fishers should use a variety of “descending” devices to help released fish overcome surface buoyancy (Theberge and Parker, 2005; Hochhalter and Reed, 2011; Hannah et al., 2012; Hochhalter, 2012). The data from this study suggest that descending devices may have a positive effect on survival of yelloweye rockfish across a wide depth range (Fig. 6, lower panel). However, for canary rockfish captured at depths greater than 135 m, survival may be so low that it might be better to either allow retention of these fish or to simply not allow a fishery to operate at these deeper depths (Fig. 6, upper panel).”

Saturday, April 19, 2014

The importance of vitality in fishing experiments

Key fishing stressor factors, Davis, 2002

Knowledge of key factors controlling fisheries is necessary for sustainable management of fishery stocks. Scientific hypothesis testing in the form of fishing experiments is a necessary component of fisheries knowledge development and validation. Fishing experiments are performed in the field by simulating actual fishing conditions, by actual fishing, and during survey cruises. Fishing experiments can be used to identify key stressor factors that control and contribute to the survival and mortality of captured, discarded, or escaped animals as well as identifying the key factors controlling fishing gear capture efficiency and selectivity.


Trawl captured animals, Robert A. Pawlowski, NOAA Corps

While field fishing experiments represent realistic conditions, they are a matrix of confounded factors which cannot be easily separated into mechanistic hypothesis tests and explanations of factor importance. Effects of factors are often synergistic and prior animal stressor history can alter relative effects of subsequent exposure to factors, e.g., depth changes, injury, elevated temperature, air exposure, and size and species differences.


Flow chart of experimental fishing stressor factors, Davis and Olla 2001

Simulated fishing experiments with factors in controlled laboratory conditions is one way to test hypotheses about mechanistic effects of individual factors and their interactions. However these laboratory experiments are generally viewed as not realistic to field conditions and they are used to identify factors that may be important in the field. Furthermore, modern requirements of animal care laws and committees restrict the use of laboratory fishing experiments by not allowing human application of experimental stressor factors on animals and the use of mortality outcomes. These same laws and committees do not have jurisdiction over field fishing experiments. 

Laboratory trawl tow tank, NOAA RACE

Given that factors are confounded in field fishing experiments, how can we test for effects of factors in the traditional mechanistic hypothesis test? We can test for changes in animal vitality. Since vitality has been shown to be correlated with survival and mortality, it is a useful indicator of animal outcomes before and after exposure to experimental stressor factors. For example, we generally do not know the exposure of animals to stressors prior to experimental manipulation of factors. Not knowing the complete stressor profile is not an obstacle since the animal knows the complete stressor profile and presents vitality levels that have integrated the effects of that profile. Then we can expose animals to additional stressor factors and measure further changes in vitality from their initial levels. 

Important to shift mechanistic thinking from needing to know the effects of individual factors to knowing the effects of fishing variability. Manipulations of time in air and elevated temperature represent differences in fisher sorting and handling behavior on deck and are appropriate for defining the effects of fishing variability. Effects of variation in tow time and catch quantity can be manipulated and are included in the mix of animals landed. The questions of associations among individual fishing stressor factors is left for another day and are more of interest to mechanistic scientists than to managers and fishers. Fishing variability will give a picture of the fishery and its potential effects on animal vitality. By measuring animal vitality, which integrates the effects of stressor factors, you have measured a key master variable that indicates the important effects of fishing.

Vitality is the key variable that can be used to indicate and predict delayed survival and mortality outcomes for discards and escapees from fishing. The relationships between vitality and survival and mortality are defined by captive observation or tagging and biotelemetry experiments. During exposure of animals it is important to insure that all stressor types normally in the fishery in question are present for the population of tested animals (e.g., temperature, air exposure, fatigue, injury) and that a full range (0-100%) of vitality impairment and mortality are observed. Then relationships can be calculated for each species of interest that do not extrapolate beyond available data ranges and that apply to the fishery of interest. These relationships can then be used to predict survival and mortality for animals under any condition of interest in the fishery without the need for further captive observations or tagging.

Consider how scientific peer-reviewers may see this shift from mechanistic thinking and develop thoughts that elaborate the importance of vitality from the animal’s point of view. Some resistance is expected from mechanists who believe that they can attribute cause and effect to individual factors. There is always a matrix of interactions, even under the most restrictive and controlled experimental conditions. There are always interactions and synergisms to account for. As a result, there are associations among factors, rather than cause and effect. In other words, there are causes and conditions associated with effects. 

From the fishing experiment perspective, we set up fishing conditions that are real or that simulate fishing and then measure animal vitality, which is an integrated measure of the effects of interacting factors. It is useful to identify the important stressors by experimentally changing them in fishing experiments; changes in time in air, trawl time, trap retrieval time, depth, season, temperature, catch amount, and injuries. Always remember that there is a hidden context of conditions, i.e., the animals are prestressed by other factors not being controlled. But this hidden context can be accounted for by observing and comparing vitality impairment among animals observed in all treatments, including simply captured animals without additional stressor exposures (using positive controls). This experimental approach is useful both for fishers who wish to modify fishing gear and practices, as well as managers who wish to observe animal vitality and correlate that with mortality and survival.